Suppr超能文献

基于人群数据的联邦机器学习改善心脏结构和功能的超声心动图自动定量分析:该项目

Population data-based federated machine learning improves automated echocardiographic quantification of cardiac structure and function: the project.

作者信息

Morbach Caroline, Gelbrich Götz, Schreckenberg Marcus, Hedemann Maike, Pelin Dora, Scholz Nina, Miljukov Olga, Wagner Achim, Theisen Fabian, Hitschrich Niklas, Wiebel Hendrik, Stapf Daniel, Karch Oliver, Frantz Stefan, Heuschmann Peter U, Störk Stefan

机构信息

Department Clinical Research and Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany.

Department of Medicine I, University Hospital Würzburg, Oberdürrbacherstr. 6, D-97080 Würzburg, Germany.

出版信息

Eur Heart J Digit Health. 2023 Nov 15;5(1):77-88. doi: 10.1093/ehjdh/ztad069. eCollection 2024 Jan.

Abstract

AIMS

Machine-learning (ML)-based automated measurement of echocardiography images emerges as an option to reduce observer variability. The objective of the study is to improve the accuracy of a pre-existing automated reading tool ('original detector') by federated ML-based re-training.

METHODS AND RESULTS

was based on the echocardiography images of = 4965 participants of the population-based Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression Cohort Study. We implemented federated ML: echocardiography images were read by the Academic Core Lab Ultrasound-based Cardiovascular Imaging at the University Hospital Würzburg (UKW). A random algorithm selected 3226 participants for re-training of the original detector. According to data protection rules, the generation of ground truth and ML training cycles took place within the UKW network. Only non-personal training weights were exchanged with the external cooperation partner for the refinement of ML algorithms. Both the original detectors as the re-trained detector were then applied to the echocardiograms of = 563 participants not used for training. With regard to the human referent, the re-trained detector revealed (i) superior accuracy when contrasted with the original detector's performance as it arrived at significantly smaller mean differences in all but one parameter, and a (ii) smaller absolute difference between measurements when compared with a group of different human observers.

CONCLUSION

Population data-based ML in a federated ML set-up was feasible. The re-trained detector exhibited a much lower measurement variability than human readers. This gain in accuracy and precision strengthens the confidence in automated echocardiographic readings, which carries large potential for applications in various settings.

摘要

目的

基于机器学习(ML)的超声心动图图像自动测量成为减少观察者变异性的一种选择。本研究的目的是通过基于联邦学习的重新训练来提高现有自动阅读工具(“原始检测器”)的准确性。

方法和结果

基于心力衰竭A - B期人群特征与病程及进展决定因素队列研究中4965名参与者的超声心动图图像。我们实施了联邦学习:超声心动图图像由维尔茨堡大学医院(UKW)基于超声的心血管成像学术核心实验室读取。一种随机算法选择了3226名参与者对原始检测器进行重新训练。根据数据保护规则,在UKW网络内生成真实数据和进行机器学习训练循环。仅与外部合作方交换非个人训练权重以优化机器学习算法。然后将原始检测器和重新训练后的检测器应用于563名未用于训练的参与者的超声心动图。与人工参考相比,重新训练后的检测器显示:(i)与原始检测器的性能相比具有更高的准确性,因为除一个参数外,在所有参数上其平均差异显著更小;(ii)与一组不同的人类观察者相比,测量之间的绝对差异更小。

结论

在联邦学习设置中基于人群数据的机器学习是可行的。重新训练后的检测器表现出比人类读者低得多的测量变异性。这种准确性和精确性的提高增强了对自动超声心动图读数的信心,这在各种场景中具有很大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1620/10802820/c301f019fb58/ztad069_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验