He Jinxian, Liang Gaofeng, Yu Hongyan, Lin Chengbin, Shen Weiyu
Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
Front Oncol. 2024 Jan 9;13:1338809. doi: 10.3389/fonc.2023.1338809. eCollection 2023.
This study aims to develop a predictive model for identifying lung cancer patients at elevated risk for bone metastases, utilizing the Unified Immunoinflammatory Index and various tumor markers. This model is expected to facilitate timely and effective therapeutic interventions, especially in the context of the growing significance of immunotherapy for lung cancer treatment.
A retrospective analysis was conducted on 324 lung cancer patients treated between January 2019 and January 2021. After meeting the inclusion criteria, 241 patients were selected, with 56 exhibiting bone metastases. The cohort was divided into a training group (169 patients) and a validation group (72 patients) at a 7:3 ratio. Lasso regression was employed to identify critical variables, followed by logistic regression to construct a Nomogram model for predicting bone metastases. The model's validity was ascertained through internal and external evaluations using the Concordance Index (C-index) and Receiver Operating Characteristic (ROC) curve.
The study identified several factors influencing bone metastasis in lung cancer, such as the Systemic Immune-Inflammatory Index (SII), Carcinoembryonic Antigen (CEA), Neuron Specific Enolase (NSE), Cyfra21-1, and Neutrophil-to-Lymphocyte Ratio (NLR). These factors were incorporated into the Nomogram model, demonstrating high validation accuracy with C-index scores of 0.936 for internal and 0.924 for external validation.
The research successfully developed an intuitive and accurate Nomogram prediction model utilizing clinical indicators to predict the risk of bone metastases in lung cancer patients. This tool can be instrumental in aiding clinicians in developing personalized treatment plans, thereby optimizing patient outcomes in lung cancer care.
本研究旨在利用统一免疫炎症指数和各种肿瘤标志物,开发一种用于识别骨转移风险升高的肺癌患者的预测模型。预计该模型将有助于及时有效的治疗干预,特别是在免疫疗法对肺癌治疗日益重要的背景下。
对2019年1月至2021年1月期间接受治疗的324例肺癌患者进行回顾性分析。符合纳入标准后,选择了241例患者,其中56例出现骨转移。该队列以7:3的比例分为训练组(169例患者)和验证组(72例患者)。采用套索回归识别关键变量,随后进行逻辑回归以构建预测骨转移的列线图模型。通过使用一致性指数(C指数)和受试者操作特征(ROC)曲线的内部和外部评估来确定模型的有效性。
该研究确定了影响肺癌骨转移的几个因素,如全身免疫炎症指数(SII)、癌胚抗原(CEA)、神经元特异性烯醇化酶(NSE)、细胞角蛋白19片段(Cyfra21-1)和中性粒细胞与淋巴细胞比值(NLR)。这些因素被纳入列线图模型,内部验证的C指数评分为0.936,外部验证的C指数评分为0.924,显示出较高的验证准确性。
该研究成功开发了一种直观准确的列线图预测模型,利用临床指标预测肺癌患者骨转移的风险。该工具可有助于临床医生制定个性化治疗方案,从而优化肺癌护理中的患者结局。