Suppr超能文献

肠-肝轴调节肠道干细胞适应性。

Gut-liver axis calibrates intestinal stem cell fitness.

机构信息

Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell. 2024 Feb 15;187(4):914-930.e20. doi: 10.1016/j.cell.2024.01.001. Epub 2024 Jan 26.

Abstract

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.

摘要

肠道和肝脏被认为通过胆管、门静脉和体循环相互交流。然而,目前尚不清楚这个肠道-肝脏轴如何调节肠道生理学。通过肝切除术和转录组学及蛋白质组学分析,我们鉴定出一种来源于肝脏的可溶性 Wnt 抑制剂——色素上皮衍生因子(PEDF),它通过抑制 Wnt/β-连环蛋白信号通路来抑制肠干细胞(ISC)的过度增殖,从而维持肠道内稳态。此外,我们发现肠道炎症产生的微生物危险信号可以被肝脏感知,导致 PEDF 产生受到过氧化物酶体增殖物激活受体-α(PPARα)的抑制。这种抑制作用释放了 ISC 的增殖,从而加速肠道组织修复。此外,用临床用于降血脂的过氧化物酶体增殖物激活受体-α 激动剂——非诺贝特治疗小鼠会由于 PEDF 活性而增加结肠炎易感性。因此,我们已经确定 PEDF 在通过肠道和肝脏的相互作用来调节 ISC 扩张以维持肠道内稳态方面发挥了独特的作用。

相似文献

1
Gut-liver axis calibrates intestinal stem cell fitness.
Cell. 2024 Feb 15;187(4):914-930.e20. doi: 10.1016/j.cell.2024.01.001. Epub 2024 Jan 26.
2
β-Glucan Relieves Symptoms of Colitis via PPARα-Mediated Intestinal Stem Cell Proliferation.
J Agric Food Chem. 2024 Nov 6;72(44):24359-24373. doi: 10.1021/acs.jafc.3c09535. Epub 2024 Jul 31.
3
PPAR agonist fenofibrate attenuates iron-induced liver injury in mice by modulating the Sirt3 and -catenin signaling.
Am J Physiol Gastrointest Liver Physiol. 2021 Sep 1;321(4):G262-G269. doi: 10.1152/ajpgi.00129.2021. Epub 2021 Jul 21.
4
Notoginsenoside R1 promotes Lgr5 stem cell and epithelium renovation in colitis mice via activating Wnt/β-Catenin signaling.
Acta Pharmacol Sin. 2024 Jul;45(7):1451-1465. doi: 10.1038/s41401-024-01250-7. Epub 2024 Mar 15.
6
Fenofibrate induces liver enlargement in aging mice via activating the PPARα-YAP signaling pathway.
Chem Biol Interact. 2025 Jan 5;405:111286. doi: 10.1016/j.cbi.2024.111286. Epub 2024 Oct 21.
7
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.
Mol Cell Biol. 2007 Nov;27(21):7551-9. doi: 10.1128/MCB.01034-07. Epub 2007 Sep 4.
8
Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis.
Diabetes. 2016 Dec;65(12):3730-3743. doi: 10.2337/db16-0426. Epub 2016 Aug 19.
10
MEX3A regulates Lgr5 stem cell maintenance in the developing intestinal epithelium.
EMBO Rep. 2020 Apr 3;21(4):e48938. doi: 10.15252/embr.201948938. Epub 2020 Feb 13.

引用本文的文献

5
A special type of liver failure after partial hepatectomy: a case report.
Front Oncol. 2025 Jun 2;15:1590035. doi: 10.3389/fonc.2025.1590035. eCollection 2025.
6
Mitsugumin 53 drives stem cell differentiation easing intestinal injury and inflammation.
Signal Transduct Target Ther. 2025 Jun 11;10(1):183. doi: 10.1038/s41392-025-02268-x.
7
The role of brain-liver-gut Axis in neurological disorders.
Burns Trauma. 2025 May 2;13:tkaf011. doi: 10.1093/burnst/tkaf011. eCollection 2025.

本文引用的文献

1
Peptides as multifunctional players in cancer therapy.
Exp Mol Med. 2023 Jun;55(6):1099-1109. doi: 10.1038/s12276-023-01016-x. Epub 2023 Jun 1.
2
A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019.
Nat Metab. 2022 Dec;4(12):1847-1857. doi: 10.1038/s42255-022-00698-3. Epub 2022 Nov 7.
3
LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence.
Front Cell Dev Biol. 2021 May 6;9:670960. doi: 10.3389/fcell.2021.670960. eCollection 2021.
5
Hepatokines and metabolism: Deciphering communication from the liver.
Mol Metab. 2021 Feb;44:101138. doi: 10.1016/j.molmet.2020.101138. Epub 2020 Dec 4.
6
Cell type-selective secretome profiling in vivo.
Nat Chem Biol. 2021 Mar;17(3):326-334. doi: 10.1038/s41589-020-00698-y. Epub 2020 Nov 16.
7
Protocol for Primary Mouse Hepatocyte Isolation.
STAR Protoc. 2020 Aug 13;1(2):100086. doi: 10.1016/j.xpro.2020.100086. eCollection 2020 Sep 18.
8
Inter-organ cross-talk in metabolic syndrome.
Nat Metab. 2019 Dec;1(12):1177-1188. doi: 10.1038/s42255-019-0145-5. Epub 2019 Dec 9.
9
Host-microbiota interactions in immune-mediated diseases.
Nat Rev Microbiol. 2020 Sep;18(9):521-538. doi: 10.1038/s41579-020-0367-2. Epub 2020 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验