Suppr超能文献

两样本孟德尔随机化分析使用疾病进展多层次模型的结果。

Two sample Mendelian Randomisation using an outcome from a multilevel model of disease progression.

机构信息

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

出版信息

Eur J Epidemiol. 2024 May;39(5):521-533. doi: 10.1007/s10654-023-01093-2. Epub 2024 Jan 28.

Abstract

Identifying factors that are causes of disease progression, especially in neurodegenerative diseases, is of considerable interest. Disease progression can be described as a trajectory of outcome over time-for example, a linear trajectory having both an intercept (severity at time zero) and a slope (rate of change). A technique for identifying causal relationships between one exposure and one outcome in observational data whilst avoiding bias due to confounding is two sample Mendelian Randomisation (2SMR). We consider a multivariate approach to 2SMR using a multilevel model for disease progression to estimate the causal effect an exposure has on the intercept and slope. We carry out a simulation study comparing a naïve univariate 2SMR approach to a multivariate 2SMR approach with one exposure that effects both the intercept and slope of an outcome that changes linearly with time since diagnosis. The simulation study results, across six different scenarios, for both approaches were similar with no evidence against a non-zero bias and appropriate coverage of the 95% confidence intervals (for intercept 93.4-96.2% and the slope 94.5-96.0%). The multivariate approach gives a better joint coverage of both the intercept and slope effects. We also apply our method to two Parkinson's cohorts to examine the effect body mass index has on disease progression. There was no strong evidence that BMI affects disease progression, however the confidence intervals for both intercept and slope were wide.

摘要

确定导致疾病进展的因素,特别是在神经退行性疾病中,是非常重要的。疾病进展可以描述为随着时间的推移,结局的轨迹,例如,线性轨迹既有截距(零时的严重程度)又有斜率(变化率)。在观察性数据中,有一种用于识别一个暴露因素与一个结局之间因果关系的技术,即两样本 Mendelian Randomisation(2SMR),同时避免由于混杂导致的偏倚。我们考虑了一种使用疾病进展多层次模型的多变量 2SMR 方法,以估计暴露因素对截距和斜率的因果效应。我们进行了一项模拟研究,比较了一种简单的单变量 2SMR 方法和一种多变量 2SMR 方法,后者有一个暴露因素,影响随时间变化的线性结局的截距和斜率。在六个不同的场景中,两种方法的模拟研究结果相似,没有证据表明存在非零偏差和适当覆盖 95%置信区间(对于截距为 93.4-96.2%,斜率为 94.5-96.0%)。多变量方法可以更好地同时覆盖截距和斜率效应的联合覆盖范围。我们还将我们的方法应用于两个帕金森病队列,以研究身体质量指数对疾病进展的影响。没有强有力的证据表明 BMI 会影响疾病进展,但是截距和斜率的置信区间都很宽。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8c2/11219432/0f0b8d7ce80d/10654_2023_1093_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验