Du Yu, Chen Weijie, Wang Yu, Yu Yue, Guo Kai, Qu Gan, Zhang Jianan
Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Nanomicro Lett. 2024 Jan 29;16(1):100. doi: 10.1007/s40820-023-01319-8.
Spin-engineering with electrocatalysts have been exploited to suppress the "shuttle effect" in Li-S batteries. Spin selection, spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions leading to a significant reduction of the electronic repulsions in the orbitals of catalysts. Herein, we anchor the MgPc molecules on fluorinated carbon nanotubes (MgPc@FCNT), which exhibits the single active Mg sites with axial displacement. According to the density functional theory calculations, the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li-S batteries. As a result, the MgPc@FCNT provides an initial capacity of 6.1 mAh cm even when the high sulfur loading is 4.5 mg cm, and still maintains 5.1 mAh cm after 100 cycles. This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li-S batteries.
利用电催化剂进行自旋工程已被用于抑制锂硫电池中的“穿梭效应”。自旋选择、自旋相关的电子迁移率和活化能垒中的自旋势可以作为量子自旋交换相互作用进行优化,从而显著降低催化剂轨道中的电子排斥力。在此,我们将MgPc分子锚定在氟化碳纳米管(MgPc@FCNT)上,其具有轴向位移的单个活性Mg位点。根据密度泛函理论计算,MgPc@FCNT中的电子自旋极化不仅增加了对LiPSs中间体的吸附能量,还促进了锂硫电池中电子的隧穿过程。结果,即使在高硫负载为4.5 mg cm时,MgPc@FCNT仍提供6.1 mAh cm的初始容量,并且在100次循环后仍保持5.1 mAh cm。这项工作为扩展能够实现高性能锂硫电池的主族单原子催化剂提供了新的视角。