Cojocariu Iulia, Windischbacher Andreas, Baranowski Daniel, Jugovac Matteo, Ferreira Rodrigo Cezar de Campos, Doležal Jiří, Švec Martin, Zamalloa-Serrano Jorge Manuel, Tormen Massimo, Schio Luca, Floreano Luca, Dreiser Jan, Puschnig Peter, Feyer Vitaliy, Schneider Claus M
Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.
Elettra-Sincrotrone, S.C.p.A, S.S. 14 - km 163.5, Trieste, 34149, Italy.
Adv Sci (Weinh). 2023 Aug;10(22):e2300223. doi: 10.1002/advs.202300223. Epub 2023 May 18.
Molecule-based functional devices may take advantage of surface-mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high-spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non-volatile, since no external stimuli are required to preserve it. It originates from the surface-induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non-volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule-based information storage devices.
基于分子的功能器件可利用表面介导的自旋态双稳性。传统自旋交叉配合物中的不同自旋态仅在远低于室温的温度下才可获得,且高自旋态的寿命相对较短,而本文展示了典型的镍酞菁所呈现的不同行为。有机金属配合物与铜金属电极的直接相互作用介导了二维分子阵列中高自旋态和低自旋态的共存。自旋态双稳性极其非易失性,因为无需外部刺激来维持它。它源于表面诱导的功能性镍核的轴向位移,这产生了两个稳定的局部极小值。只有通过高温刺激才能实现自旋态解锁并完全转换为低自旋态。这种自旋态转变伴随着分子电子结构的明显变化,这可能有助于在室温下进行状态读出,价谱证明了这一点。高自旋态在高温下的非易失性以及可控的自旋双稳性使得该系统在基于分子的信息存储器件应用中极具吸引力。