Sun Tao, Liang Xiaoning, Xu Xiaoyi, Wang Linhao, Xiao Wei, Ma Yuhang, Wang Rui, Gu Yian, Li Sha, Qiu Yibin, Sun Dafeng, Xu Hong, Lei Peng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, Yunnan, China.
Int J Biol Macromol. 2024 Mar;261(Pt 1):129756. doi: 10.1016/j.ijbiomac.2024.129756. Epub 2024 Jan 28.
Mushroom polysaccharides exhibit numerous health-enhancing attributes that are intricately linked to the breakdown, assimilation, and exploitation of polysaccharides within the organism. Naematelia aurantialba polysaccharides (NAPS-A), highly prized polysaccharides derived from mushrooms, remain shrouded in uncertainty regarding their characteristics pertaining to gastrointestinal digestion and gut microbial fermentation. The study aimed to understand the digestion and fecal fermentation patterns of NAPS-A. After simulated digestion, NAPS-A's physicochemical properties remained unchanged. However, during in vitro fecal fermentation, indigestible NAPS-A underwent significant changes in various properties, such as reducing sugar, chemical composition, constituent monosaccharides, Molecular weight, apparent viscosity, FT-IR spectra, and microscopic morphology. Notably, NAPS-A was effectively utilized by the gut microbiota, with unchanged properties after digestion but altered after fermentation. It influenced gut microbe composition by increasing beneficial bacteria (Lactobacillus, Faecalibacterium, and Roseburia), lowering pH, and producing short-chain fatty acids. NAPS-A fermentation enriches carbohydrate, fatty acid, and amino acid metabolic pathways through PICRUSt prediction analysis. Overall, these findings emphasize NAPS-A's role in regulating gut bacteria and their metabolic functions, despite its challenging digestibility.
蘑菇多糖具有多种促进健康的特性,这些特性与生物体中多糖的分解、同化和利用密切相关。橙黄疣柄牛肝菌多糖(NAPS-A)是一种从蘑菇中提取的珍贵多糖,但其在胃肠道消化和肠道微生物发酵方面的特性仍不明确。本研究旨在了解NAPS-A的消化和粪便发酵模式。模拟消化后,NAPS-A的物理化学性质保持不变。然而,在体外粪便发酵过程中,难消化的NAPS-A在多种性质上发生了显著变化,如还原糖、化学成分、组成单糖、分子量、表观粘度、傅里叶变换红外光谱和微观形态。值得注意的是,NAPS-A被肠道微生物群有效利用,消化后性质不变,但发酵后发生改变。它通过增加有益细菌(乳酸杆菌、粪杆菌和罗斯氏菌)、降低pH值和产生短链脂肪酸来影响肠道微生物组成。通过PICRUSt预测分析,NAPS-A发酵丰富了碳水化合物、脂肪酸和氨基酸代谢途径。总体而言,这些发现强调了NAPS-A在调节肠道细菌及其代谢功能方面的作用,尽管其消化性具有挑战性。