Suppr超能文献

调查低收入和中等收入国家随机对照试验中使用的与健康相关的数据收集工具的特征:系统评价方案。

Investigating the characteristics of health-related data collection tools used in randomised controlled trials in low-income and middle-income countries: protocol for a systematic review.

机构信息

University College Cork, Cork, Ireland.

School of Medicine, University College Cork, Cork, Ireland.

出版信息

BMJ Open. 2024 Jan 29;14(1):e077148. doi: 10.1136/bmjopen-2023-077148.

Abstract

INTRODUCTION

Health-related data collection tools, including digital ones, have become more prevalent across clinical studies in the last number of years. However, using digital data collection tools in low-income and middle-income countries presents unique challenges. In this review, we aim to provide an overview of the data collection tools currently being used in randomised controlled trials (RCTs) conducted in low-resource settings and evaluate the tools based on the characteristics outlined in the modified Mobile Survey Tool framework. These include functionality, reliability, usability, efficiency, maintainability, portability, effectiveness, cost-benefit, satisfaction, freedom from risk and context coverage. This evidence may provide a guide to selecting a suitable data collection tool for researchers planning to conduct research in low-income and middle-income countries for future studies.

METHODS AND ANALYSIS

Searches will be conducted in four electronic databases: PubMed, CINAHL, Web of Science and EMBASE. For inclusion, studies must be a RCT, mention a health-related data collection tool and conducted in a low- and middle-income country. Only studies with available full-text and written in English will be included. The search was restricted to studies published between January 2005 and June 2023. This systematic review will use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) tool. Two review authors will screen the titles and abstracts of search results independently for inclusion. In the initial screening process, the full-text articles will be retrieved if the abstract contains limited information about the study. Disagreements will be resolved through discussion. If the disagreement cannot be resolved, a third author (JO'D) will adjudicate. The study selection process will be outlined in a PRISMA flow-diagram. Data will be analysed using a narrative synthesis approach. The included studies and their outcomes will be presented in a table.

ETHICS AND DISSEMINATION

Formal ethical approval is not required as primary data will not be collected in this study. The findings from this systematic review will be published in a peer-reviewed journal.

PROSPERO REGISTRATION NUMBER

CRD42023405738.

摘要

简介

近年来,健康相关数据收集工具(包括数字工具)在临床研究中变得越来越普遍。然而,在低收入和中等收入国家使用数字数据收集工具带来了独特的挑战。在本综述中,我们旨在概述目前在资源匮乏环境中进行的随机对照试验(RCT)中使用的数据收集工具,并根据修改后的移动调查工具框架中概述的特征对这些工具进行评估。这些特征包括功能、可靠性、可用性、效率、可维护性、可移植性、有效性、成本效益、满意度、无风险和涵盖范围。这一证据可能为研究人员在计划在低收入和中等收入国家进行未来研究时选择合适的数据收集工具提供指导。

方法和分析

将在四个电子数据库中进行搜索:PubMed、CINAHL、Web of Science 和 EMBASE。纳入标准为 RCT,提及健康相关数据收集工具,并在中低收入国家进行。仅纳入具有全文且用英文书写的研究。搜索限制为 2005 年 1 月至 2023 年 6 月期间发表的研究。本系统评价将使用《系统评价和荟萃分析的首选报告项目》(PRISMA)工具。两名综述作者将独立筛选标题和摘要以进行纳入。在初始筛选过程中,如果摘要包含有关研究的有限信息,则将检索全文文章。如果存在分歧,将通过讨论解决。如果分歧无法解决,将由第三位作者(JO'D)裁决。研究选择过程将在 PRISMA 流程图中概述。将使用叙述性综合方法分析数据。将在表格中呈现纳入的研究及其结果。

伦理和传播

由于本研究不会收集原始数据,因此不需要正式的伦理批准。本系统评价的结果将发表在同行评议的期刊上。

PROSPERO 注册号:CRD42023405738。

相似文献

6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
The Importance of Standardized Assessment.标准化评估的重要性。
Mov Disord Clin Pract. 2024 Dec;11 Suppl 3(Suppl 3):S15-S20. doi: 10.1002/mdc3.14085. Epub 2024 May 26.

本文引用的文献

1
Editorial: Data-driven technologies for future healthcare systems.社论:面向未来医疗保健系统的数据驱动技术
Front Med Technol. 2023 May 24;5:1183687. doi: 10.3389/fmedt.2023.1183687. eCollection 2023.
3
The Role of Digital Technology in Curbing COVID-19.数字技术在遏制 COVID-19 中的作用。
Int J Environ Res Public Health. 2022 Jul 7;19(14):8287. doi: 10.3390/ijerph19148287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验