文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

AutoTransOP:使用深度学习在无需直系同源物要求的情况下进行组学特征的转换。

AutoTransOP: translating omics signatures without orthologue requirements using deep learning.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden.

出版信息

NPJ Syst Biol Appl. 2024 Jan 29;10(1):13. doi: 10.1038/s41540-024-00341-9.


DOI:10.1038/s41540-024-00341-9
PMID:38287079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10825146/
Abstract

The development of therapeutics and vaccines for human diseases requires a systematic understanding of human biology. Although animal and in vitro culture models can elucidate some disease mechanisms, they typically fail to adequately recapitulate human biology as evidenced by the predominant likelihood of clinical trial failure. To address this problem, we developed AutoTransOP, a neural network autoencoder framework, to map omics profiles from designated species or cellular contexts into a global latent space, from which germane information for different contexts can be identified without the typically imposed requirement of matched orthologues. This approach was found in general to perform at least as well as current alternative methods in identifying animal/culture-specific molecular features predictive of other contexts-most importantly without requiring homology matching. For an especially challenging test case, we successfully applied our framework to a set of inter-species vaccine serology studies, where 1-to-1 mapping between human and non-human primate features does not exist.

摘要

治疗学和疫苗的开发需要对人类生物学有系统的了解。尽管动物和体外培养模型可以阐明一些疾病机制,但它们通常不能充分重现人类生物学,这表现在临床试验失败的主要可能性上。为了解决这个问题,我们开发了 AutoTransOP,这是一个神经网络自动编码器框架,将来自指定物种或细胞背景的组学图谱映射到一个全局潜在空间中,从中可以识别出不同背景下的相关信息,而无需通常强加的同源物匹配要求。一般来说,这种方法在识别动物/培养物特有的分子特征方面至少与当前的替代方法表现一样好,这些特征可预测其他背景——最重要的是,无需同源匹配。对于一个特别具有挑战性的测试案例,我们成功地将我们的框架应用于一组物种间疫苗血清学研究,在这些研究中,人类和非人类灵长类动物特征之间不存在一对一映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/1aaa23e58e63/41540_2024_341_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/9f8a3a995997/41540_2024_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/24143b691f0b/41540_2024_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/250688e4ef5a/41540_2024_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/54398791eff2/41540_2024_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/635b36d6d9cf/41540_2024_341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/1aaa23e58e63/41540_2024_341_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/9f8a3a995997/41540_2024_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/24143b691f0b/41540_2024_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/250688e4ef5a/41540_2024_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/54398791eff2/41540_2024_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/635b36d6d9cf/41540_2024_341_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aeb/10825146/1aaa23e58e63/41540_2024_341_Fig6_HTML.jpg

相似文献

[1]
AutoTransOP: translating omics signatures without orthologue requirements using deep learning.

NPJ Syst Biol Appl. 2024-1-29

[2]
Author Correction: AutoTransOP: translating omics signatures without orthologue requirements using deep learning.

NPJ Syst Biol Appl. 2024-12-13

[3]
scGraph2Vec: a deep generative model for gene embedding augmented by graph neural network and single-cell omics data.

Gigascience. 2024-1-2

[4]
A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.

BMC Med Genomics. 2019-12-20

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.

Methods Mol Biol. 2021

[7]
Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.

Comput Biol Med. 2022-9

[8]
A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.

BMC Bioinformatics. 2023-2-14

[9]
DeepMoIC: multi-omics data integration via deep graph convolutional networks for cancer subtype classification.

BMC Genomics. 2024-12-18

[10]
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).

BMC Genomics. 2019-12-20

引用本文的文献

[1]
Cross-species blood transcriptional correlates of BCG-mediated protection against tuberculosis include innate and adaptive immune processes.

bioRxiv. 2025-5-9

[2]
Mouse-to-human modeling of microglia single-nuclei transcriptomics identifies immune signaling pathways and potential therapeutic candidates associated with Alzheimer's disease.

bioRxiv. 2025-2-8

本文引用的文献

[1]
Species-agnostic transfer learning for cross-species transcriptomics data integration without gene orthology.

Brief Bioinform. 2024-1-22

[2]
Transfer learning enables predictions in network biology.

Nature. 2023-6

[3]
A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data.

BMC Bioinformatics. 2023-5-15

[4]
Predicting cellular responses to complex perturbations in high-throughput screens.

Mol Syst Biol. 2023-6-12

[5]
Biologically informed deep learning to query gene programs in single-cell atlases.

Nat Cell Biol. 2023-2

[6]
Optimal dimensionality selection for independent component analysis of transcriptomic data.

BMC Bioinformatics. 2021-12-8

[7]
recount3: summaries and queries for large-scale RNA-seq expression and splicing.

Genome Biol. 2021-11-29

[8]
Computational Interspecies Translation Between Alzheimer's Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging.

Front Neurosci. 2021-9-30

[9]
DeepCellState: An autoencoder-based framework for predicting cell type specific transcriptional states induced by drug treatment.

PLoS Comput Biol. 2021-10

[10]
Analysis of single-cell RNA sequencing data based on autoencoders.

BMC Bioinformatics. 2021-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索