Surendran Mythili, Singh Shantanu, Chen Huandong, Wu Claire, Avishai Amir, Shao Yu-Tsun, Ravichandran Jayakanth
Mork Family Department of Chemical Engineering and Materials Science, and Core Center for Excellence in Nano Imaging, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089, USA.
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089, USA.
Adv Mater. 2024 May;36(19):e2312620. doi: 10.1002/adma.202312620. Epub 2024 Feb 12.
Vapor-pressure mismatched materials such as transition metal chalcogenides have emerged as electronic, photonic, and quantum materials with scientific and technological importance. However, epitaxial growth of vapor-pressure mismatched materials are challenging due to differences in the reactivity, sticking coefficient, and surface adatom mobility of the mismatched species constituting the material, especially sulfur containing compounds. Here, a novel approach is reported to grow chalcogenides-hybrid pulsed laser deposition-wherein an organosulfur precursor is used as a sulfur source in conjunction with pulsed laser deposition to regulate the stoichiometry of the deposited films. Epitaxial or textured thin films of sulfides with variety of structure and chemistry such as alkaline metal chalcogenides, main group chalcogenides, transition metal chalcogenides, and chalcogenide perovskites are demonstrated, and structural characterization reveal improvement in thin film crystallinity, and surface and interface roughness compared to the state-of-the-art. The growth method can be broadened to other vapor-pressure mismatched chalcogenides such as selenides and tellurides. This work opens up opportunities for broader epitaxial growth of chalcogenides, especially sulfide-based thin film technological applications.
诸如过渡金属硫族化合物之类的蒸气压不匹配材料已成为具有科学和技术重要性的电子、光子和量子材料。然而,由于构成材料的不匹配物种(特别是含硫化合物)在反应性、粘附系数和表面吸附原子迁移率方面存在差异,蒸气压不匹配材料的外延生长具有挑战性。在此,报道了一种生长硫族化合物的新方法——混合脉冲激光沉积,其中有机硫前驱体与脉冲激光沉积结合用作硫源,以调节沉积薄膜的化学计量。展示了具有各种结构和化学组成的硫化物外延或织构薄膜,如碱金属硫族化合物、主族硫族化合物、过渡金属硫族化合物和硫族钙钛矿,结构表征显示与现有技术相比,薄膜结晶度、表面和界面粗糙度有所改善。该生长方法可扩展到其他蒸气压不匹配的硫族化合物,如硒化物和碲化物。这项工作为硫族化合物的更广泛外延生长,特别是基于硫化物的薄膜技术应用开辟了机会。