Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA.
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
J R Soc Interface. 2024 Jan;21(210):20230527. doi: 10.1098/rsif.2023.0527. Epub 2024 Jan 31.
Biological springs can be used in nature for energy conservation and ultra-fast motion. The loading and unloading rates of elastic materials can play an important role in determining how the properties of these springs affect movements. We investigate the mechanical energy efficiency of biological springs (American bullfrog plantaris tendons and guinea fowl lateral gastrocnemius tendons) and synthetic elastomers. We measure these materials under symmetric rates (equal loading and unloading durations) and asymmetric rates (unequal loading and unloading durations) using novel dynamic mechanical analysis measurements. We find that mechanical efficiency is highest at symmetric rates and significantly decreases with a larger degree of asymmetry. A generalized one-dimensional Maxwell model with no fitting parameters captures the experimental results based on the independently characterized linear viscoelastic properties of the materials. The model further shows that a broader viscoelastic relaxation spectrum enhances the effect of rate-asymmetry on efficiency. Overall, our study provides valuable insights into the interplay between material properties and unloading dynamics in both biological and synthetic elastic systems.
生物弹簧可以在自然界中用于能量守恒和超高速运动。弹性材料的加载和卸载速率在确定这些弹簧的特性如何影响运动方面起着重要作用。我们研究了生物弹簧(美洲牛蛙跖肌腱和珍珠鸡外侧腓肠肌腱)和合成弹性体的机械能效率。我们使用新型动态力学分析测量方法在对称速率(相等的加载和卸载持续时间)和非对称速率(加载和卸载持续时间不相等)下测量这些材料。我们发现,机械效率在对称速率下最高,随着不对称程度的增加而显著降低。具有无拟合参数的广义一维 Maxwell 模型基于材料的独立特征化线性粘弹性特性捕获了实验结果。该模型进一步表明,更广泛的粘弹性松弛谱增强了速率不对称对效率的影响。总的来说,我们的研究为生物和合成弹性系统中材料特性和卸载动力学之间的相互作用提供了有价值的见解。