Suppr超能文献

粘弹性材料在加载和卸载时以相同速率进行时效率最高。

Viscoelastic materials are most energy efficient when loaded and unloaded at equal rates.

机构信息

Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA.

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.

出版信息

J R Soc Interface. 2024 Jan;21(210):20230527. doi: 10.1098/rsif.2023.0527. Epub 2024 Jan 31.

Abstract

Biological springs can be used in nature for energy conservation and ultra-fast motion. The loading and unloading rates of elastic materials can play an important role in determining how the properties of these springs affect movements. We investigate the mechanical energy efficiency of biological springs (American bullfrog plantaris tendons and guinea fowl lateral gastrocnemius tendons) and synthetic elastomers. We measure these materials under symmetric rates (equal loading and unloading durations) and asymmetric rates (unequal loading and unloading durations) using novel dynamic mechanical analysis measurements. We find that mechanical efficiency is highest at symmetric rates and significantly decreases with a larger degree of asymmetry. A generalized one-dimensional Maxwell model with no fitting parameters captures the experimental results based on the independently characterized linear viscoelastic properties of the materials. The model further shows that a broader viscoelastic relaxation spectrum enhances the effect of rate-asymmetry on efficiency. Overall, our study provides valuable insights into the interplay between material properties and unloading dynamics in both biological and synthetic elastic systems.

摘要

生物弹簧可以在自然界中用于能量守恒和超高速运动。弹性材料的加载和卸载速率在确定这些弹簧的特性如何影响运动方面起着重要作用。我们研究了生物弹簧(美洲牛蛙跖肌腱和珍珠鸡外侧腓肠肌腱)和合成弹性体的机械能效率。我们使用新型动态力学分析测量方法在对称速率(相等的加载和卸载持续时间)和非对称速率(加载和卸载持续时间不相等)下测量这些材料。我们发现,机械效率在对称速率下最高,随着不对称程度的增加而显著降低。具有无拟合参数的广义一维 Maxwell 模型基于材料的独立特征化线性粘弹性特性捕获了实验结果。该模型进一步表明,更广泛的粘弹性松弛谱增强了速率不对称对效率的影响。总的来说,我们的研究为生物和合成弹性系统中材料特性和卸载动力学之间的相互作用提供了有价值的见解。

相似文献

1
Viscoelastic materials are most energy efficient when loaded and unloaded at equal rates.
J R Soc Interface. 2024 Jan;21(210):20230527. doi: 10.1098/rsif.2023.0527. Epub 2024 Jan 31.
2
Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo.
J Biomech. 2011 Apr 29;44(7):1334-9. doi: 10.1016/j.jbiomech.2011.01.005. Epub 2011 Feb 1.
3
Understanding how reduced loading affects Achilles tendon mechanical properties using a fibre-reinforced poro-visco-hyper-elastic model.
J Mech Behav Biomed Mater. 2019 Aug;96:301-309. doi: 10.1016/j.jmbbm.2019.04.041. Epub 2019 Apr 26.
4
Strain state dependent anisotropic viscoelasticity of tendon-to-bone insertion.
Math Biosci. 2019 Feb;308:1-7. doi: 10.1016/j.mbs.2018.12.007. Epub 2018 Dec 8.
6
Dynamic viscoelastic behavior of lower extremity tendons during simulated running.
J Appl Physiol (1985). 2000 Oct;89(4):1352-9. doi: 10.1152/jappl.2000.89.4.1352.
7
Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
J Mech Behav Biomed Mater. 2020 Dec;112:104038. doi: 10.1016/j.jmbbm.2020.104038. Epub 2020 Aug 24.
9
A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
PLoS One. 2015 Jun 1;10(6):e0126869. doi: 10.1371/journal.pone.0126869. eCollection 2015.
10
Elastic and viscoelastic properties of a type I collagen fiber.
J Theor Biol. 2012 Jan 21;293:197-205. doi: 10.1016/j.jtbi.2011.10.018. Epub 2011 Oct 21.

本文引用的文献

1
Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations.
J R Soc Interface. 2023 May;20(202):20230141. doi: 10.1098/rsif.2023.0141. Epub 2023 May 17.
2
Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots.
Sci Robot. 2023 Mar 15;8(76):eadf4278. doi: 10.1126/scirobotics.adf4278.
3
Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer.
Sci Adv. 2022 Nov 16;8(46):eadd3788. doi: 10.1126/sciadv.add3788. Epub 2022 Nov 18.
5
Tuned muscle and spring properties increase elastic energy storage.
J Exp Biol. 2021 Dec 15;224(24). doi: 10.1242/jeb.243180. Epub 2021 Dec 16.
6
Slingshot spiders build tensed, underdamped webs for ultrafast launches and speedy halts.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Mar;207(2):205-217. doi: 10.1007/s00359-021-01475-5. Epub 2021 Mar 15.
7
Programming Impulsive Deformation with Mechanical Metamaterials.
Phys Rev Lett. 2020 Sep 4;125(10):108002. doi: 10.1103/PhysRevLett.125.108002.
8
Achieving High-Speed Retraction in Stretchable Hydrogels.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40719-40727. doi: 10.1021/acsami.0c08132. Epub 2020 Aug 26.
9
Loading Rate Has Little Influence on Tendon Fascicle Mechanics.
Front Physiol. 2020 Mar 24;11:255. doi: 10.3389/fphys.2020.00255. eCollection 2020.
10
Clamping soft biologic tissues for uniaxial tensile testing: A brief survey of current methods and development of a novel clamping mechanism.
J Mech Behav Biomed Mater. 2020 Mar;103:103503. doi: 10.1016/j.jmbbm.2019.103503. Epub 2019 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验