Suppr超能文献

用于空中机器人中介电弹性体致动器的激光辅助故障恢复

Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots.

作者信息

Kim Suhan, Hsiao Yi-Hsuan, Lee Younghoon, Zhu Weikun, Ren Zhijian, Niroui Farnaz, Chen Yufeng

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Sci Robot. 2023 Mar 15;8(76):eadf4278. doi: 10.1126/scirobotics.adf4278.

Abstract

Insects maintain remarkable agility after incurring severe injuries or wounds. Although robots driven by rigid actuators have demonstrated agile locomotion and manipulation, most of them lack animal-like robustness against unexpected damage. Dielectric elastomer actuators (DEAs) are a class of muscle-like soft transducers that have enabled nimble aerial, terrestrial, and aquatic robotic locomotion comparable to that of rigid actuators. However, unlike muscles, DEAs suffer local dielectric breakdowns that often cause global device failure. These local defects severely limit DEA performance, lifetime, and size scalability. We developed DEAs that can endure more than 100 punctures while maintaining high bandwidth (>400 hertz) and power density (>700 watt per kilogram)-sufficient for supporting energetically expensive locomotion such as flight. We fabricated electroluminescent DEAs for visualizing electrode connectivity under actuator damage. When the DEA suffered severe dielectric breakdowns that caused device failure, we demonstrated a laser-assisted repair method for isolating the critical defects and recovering performance. These results culminate in an aerial robot that can endure critical actuator and wing damage while maintaining similar accuracy in hovering flight. Our work highlights that soft robotic systems can embody animal-like agility and resilience-a critical biomimetic capability for future robots to interact with challenging environments.

摘要

昆虫在遭受严重损伤或创伤后仍能保持卓越的敏捷性。尽管由刚性致动器驱动的机器人已展现出敏捷的运动和操作能力,但它们中的大多数在面对意外损坏时缺乏类似动物的鲁棒性。介电弹性体致动器(DEA)是一类类似肌肉的软换能器,已实现了与刚性致动器相当的灵活空中、陆地和水上机器人运动。然而,与肌肉不同的是,DEA会出现局部介电击穿,这常常导致整个器件失效。这些局部缺陷严重限制了DEA的性能、寿命和尺寸可扩展性。我们开发出了能够承受100多次穿刺,同时保持高带宽(>400赫兹)和功率密度(>700瓦/千克)的DEA,足以支持诸如飞行等能耗高昂的运动。我们制造了电致发光DEA,用于在致动器受损时可视化电极连接情况。当DEA遭受严重介电击穿导致器件失效时,我们展示了一种激光辅助修复方法,用于隔离关键缺陷并恢复性能。这些成果最终促成了一款空中机器人,它能够承受关键致动器和机翼损伤,同时在悬停飞行中保持类似的精度。我们的工作突出表明,软机器人系统可以体现出类似动物的敏捷性和恢复力——这是未来机器人与具有挑战性的环境进行交互的一项关键仿生能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验