AI Systems in Medicine, Technical University of Darmstadt, 64283, Darmstadt, Germany.
Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland.
Sci Rep. 2024 Jan 30;14(1):2498. doi: 10.1038/s41598-023-50701-4.
Heart rate variability (HRV) analysis is often used to estimate human health and fitness status. More specifically, a range of parameters that express the variability in beat-to-beat intervals are calculated from electrocardiogram beat detections. Since beat detection may yield erroneous interval data, these errors travel through the processing chain and may result in misleading parameter values that can lead to incorrect conclusions. In this study, we utilized Monte Carlo simulation on real data, Kolmogorov-Smirnov tests and Bland-Altman analysis to carry out extensive analysis of the noise sensitivity of different HRV parameters. The used noise models consider Gaussian and student-t distributed noise. As a result we observed that commonly used HRV parameters (e.g. pNN50 and LF/HF ratio) are especially sensitive to noise and that all parameters show biases to some extent. We conclude that researchers should be careful when reporting different HRV parameters, consider the distributions in addition to mean values, and consider reference data if applicable. The analysis of HRV parameter sensitivity to noise and resulting biases presented in this work generalizes over a wide population and can serve as a reference and thus provide a basis for the decision about which HRV parameters to choose under similar conditions.
心率变异性(HRV)分析常用于评估人体健康和健身状态。更具体地说,从心电图心跳检测中计算出表达心跳间隔变化的一系列参数。由于心跳检测可能会产生错误的间隔数据,这些错误会在处理链中传播,并可能导致误导性的参数值,从而导致错误的结论。在这项研究中,我们利用真实数据的蒙特卡罗模拟、柯尔莫哥洛夫-斯米尔诺夫检验和 Bland-Altman 分析,对不同 HRV 参数的噪声敏感性进行了广泛的分析。使用的噪声模型考虑了高斯和学生 t 分布的噪声。结果表明,常用的 HRV 参数(如 pNN50 和 LF/HF 比)对噪声特别敏感,所有参数都在某种程度上存在偏差。我们得出结论,研究人员在报告不同的 HRV 参数时应该小心,除了平均值外,还应考虑分布情况,并在适用时考虑参考数据。本工作中对 HRV 参数对噪声的敏感性和由此产生的偏差的分析适用于广泛的人群,可以作为参考,从而为在类似条件下选择哪些 HRV 参数提供依据。