Hsiao Chin-To, Tong Carl, Coté Gerard L
Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
School of Medicine, Texas A&M University, Bryan, TX 77807, USA.
Biosensors (Basel). 2025 Mar 24;15(4):208. doi: 10.3390/bios15040208.
The rate of oxygen consumption, which is measured as the volume of oxygen consumed per mass per minute (VO) mL/kg/min, is a critical metric for evaluating cardiovascular health, metabolic status, and respiratory function. Specifically, VO is a powerful prognostic predictor of survival in patients with heart failure (HF) because it provides an indirect assessment of a patient's ability to increase cardiac output (CO). In addition, VO measurements, particularly VO max, are significant because they provide a reliable indicator of your cardiovascular fitness and aerobic endurance. However, traditional VO assessment requires bulky, breath-by-breath gas analysis systems, limiting frequent and continuous monitoring to specialized settings. This study presents a novel wrist-worn multiwavelength photoplethysmography (PPG) device and machine learning algorithm designed to estimate VO continuously. Unlike conventional wearables that rely on static formulas for VO max estimation, our algorithm leverages the data from the PPG wearable and uses the Beer-Lambert Law with inputs from five wavelengths (670 nm, 770 nm, 810 nm, 850 nm, and 950 nm), incorporating the isosbestic point at 810 nm to differentiate oxy- and deoxy-hemoglobin. A validation study was conducted with eight subjects using a modified Bruce protocol, comparing the PPG-based estimates to the gold-standard Parvo Medics gas analysis system. The results demonstrated a mean absolute error of 1.66 mL/kg/min and an R of 0.94. By providing precise, individualized VO estimates using direct tissue oxygenation data, this wearable solution offers significant clinical and practical advantages over traditional methods, making continuous and accurate cardiovascular assessment readily available beyond clinical environments.
耗氧率是以每分钟每千克消耗的氧气量(VO)毫升/千克/分钟来衡量的,它是评估心血管健康、代谢状态和呼吸功能的关键指标。具体而言,VO是心力衰竭(HF)患者生存的有力预后预测指标,因为它间接评估了患者增加心输出量(CO)的能力。此外,VO测量,尤其是最大摄氧量(VO max),很重要,因为它们提供了心血管健康和有氧耐力的可靠指标。然而,传统的VO评估需要庞大的逐次呼吸气体分析系统,将频繁和连续监测限制在专门的环境中。本研究提出了一种新型的腕戴式多波长光电容积脉搏波描记法(PPG)设备和机器学习算法,旨在连续估计VO。与依赖静态公式估计VO max的传统可穿戴设备不同,我们的算法利用来自PPG可穿戴设备的数据,并使用比尔-朗伯定律,输入五个波长(670纳米、770纳米、810纳米、850纳米和950纳米)的数据,结合810纳米处的等吸收点来区分氧合血红蛋白和脱氧血红蛋白。使用改良的布鲁斯方案对八名受试者进行了验证研究,将基于PPG的估计值与金标准的帕尔沃医疗气体分析系统进行比较。结果显示平均绝对误差为1.66毫升/千克/分钟,R值为0.94。通过使用直接组织氧合数据提供精确的个性化VO估计,这种可穿戴解决方案比传统方法具有显著的临床和实际优势,使连续和准确的心血管评估在临床环境之外也能轻松实现。