Williams Charles H, Neitzel Leif R, Cornell Jessica, Rea Samantha, Mills Ian, Silver Maya S, Ahmad Jovanni D, Birukov Konstantin G, Birukova Anna, Brem Henry, Tyler Betty, Bar Eli E, Hong Charles C
Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
Exp Hematol Oncol. 2024 Jan 31;13(1):13. doi: 10.1186/s40164-023-00468-1.
Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis.
OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival.
We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells.
These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.
多形性胶质母细胞瘤(GBM)因其侵袭性本质和极为有限的治疗选择,在肿瘤学领域是一项严峻挑战。尽管经过数十年研究,GBM的生存率实际上仍停滞不前。GBM的一个决定性特征是肿瘤微环境高度酸性化,这被认为会激活促肿瘤发生途径。这种酸化是肿瘤代谢改变有利于有氧糖酵解的结果,这一现象被称为瓦伯格效应。低细胞外pH使胶质细胞的肿瘤具有放射抗性。值得注意的是,一种酸感应GPCR——GPR68,在放射抗性GBM中上调。使用具有GPR68脱靶激动作用的劳拉西泮,与多种癌症更差的临床结果相关。然而,肿瘤微环境酸化在GPR68激活中的作用在癌症中尚未得到评估。在此,我们使用一种名为奥格雷莫芬(OGM)的新型高特异性GPR68小分子抑制剂,在GBM细胞中探究GPR68的具体作用,以诱导铁介导的细胞死亡途径:铁死亡。
OGM是在无偏向的斑马鱼胚胎发育筛选中鉴定出来的,并用吗啉代寡核苷酸和基于CRISPR的方法进行了验证。接下来,一种糖基磷脂酰肌醇锚定的pH报告基因pHluorin2在U87胶质母细胞瘤细胞中稳定表达,以探测细胞外酸化。通过细胞核计数和细胞活力检测的细胞存活试验,用于证明12种永生化和PDX GBM细胞系对GPR68抑制的敏感性。为了确定GPR68抑制的细胞死亡机制,我们对RNAseq进行了DAVID通路分析。我们的主要指标——铁死亡,随后通过对包括TFRC在内的报告基因进行蛋白质印迹和qRT-PCR得以证实。这一发现通过透射电子显微镜和脂荧光染色进一步验证,以评估脂质过氧化。最后,我们使用小干扰RNA和CRISPR干扰来证明通过GPR68抑制激活转录因子4(ATF4)对GBM存活的关键作用。
我们使用pHLourin2探针证明了胶质母细胞瘤细胞如何使其微环境酸化以激活通常过度表达的酸感应GPCR——GPR68。使用我们的小分子抑制剂OGM和遗传学方法,我们表明阻断GPR68信号传导会导致所有13种测试的胶质母细胞瘤细胞系中出现强烈的细胞死亡,无论其基因和表型异质性如何,也无论其对GBM主要化疗药物替莫唑胺的耐药性如何。我们使用U87和U138胶质母细胞瘤细胞系展示了铁死亡的选择性诱导如何以依赖ATF4的方式发生。重要的是,OGM对斑马鱼没有急性毒性,并且发现其抑制作用对非恶性神经细胞没有影响。
这些结果表明,GPR68成为胶质母细胞瘤细胞中由细胞外酸化触发的自分泌促肿瘤发生信号级联反应的关键传感器。在这种情况下,GPR68抑制激活转录因子4(ATF4),抑制GPR68会增加ATF4的表达,从而导致铁死亡细胞死亡。这些发现为在保留健康神经组织的同时选择性诱导胶质母细胞瘤细胞铁死亡提供了一种有前景的治疗方法。