Smith Cybelle M, Thompson-Schill Sharon L, Schapiro Anna C
Department of Psychology, University of Pennsylvania.
bioRxiv. 2024 Jan 16:2024.01.15.575748. doi: 10.1101/2024.01.15.575748.
Our environment contains temporal information unfolding simultaneously at multiple timescales. How do we learn and represent these dynamic and overlapping information streams? We investigated these processes in a statistical learning paradigm with simultaneous short and long timescale contingencies. Human participants (N=96) played a game where they learned to quickly click on a target image when it appeared in one of 9 locations, in 8 different contexts. Across contexts, we manipulated the order of target locations: at a short timescale, the order of pairs of sequential locations in which the target appeared; at a longer timescale, the set of locations that appeared in the first vs. second half of the game. Participants periodically predicted the upcoming target location, and later performed similarity judgements comparing the games based on their order properties. Participants showed context dependent sensitivity to order information at both short and long timescales, with evidence of stronger learning for short timescales. We modeled the learning paradigm using a gated recurrent network trained to make immediate predictions, which demonstrated multilevel learning timecourses and patterns of sensitivity to the similarity structure of the games that mirrored human participants. The model grouped games with matching rule structure and dissociated games based on low-level order information more so than high-level order information. The work shows how humans and models can rapidly and concurrently acquire order information at different timescales.
我们的环境包含在多个时间尺度上同时展开的时间信息。我们如何学习并表征这些动态且相互重叠的信息流呢?我们在一个具有同时出现的短时间尺度和长时间尺度偶然性的统计学习范式中研究了这些过程。人类参与者(N = 96)参与了一个游戏,在这个游戏中,他们要学会在目标图像出现在9个位置中的某一个时迅速点击,该游戏有8种不同的情境。在不同情境下,我们操控目标位置的顺序:在短时间尺度上,是目标出现的连续位置对的顺序;在长时间尺度上,是游戏前半段与后半段出现的位置集合。参与者定期预测即将出现的目标位置,随后基于游戏的顺序属性对游戏进行相似性判断。参与者在短时间尺度和长时间尺度上都表现出对顺序信息的情境依赖性敏感,且有证据表明在短时间尺度上学习更强。我们使用一个经过训练以做出即时预测的门控循环网络对学习范式进行建模,该网络展示了多级学习时间进程以及对游戏相似性结构的敏感性模式,这些与人类参与者相似。该模型根据匹配的规则结构对游戏进行分组,并基于低层次顺序信息而非高层次顺序信息区分不同游戏。这项研究展示了人类和模型如何能够在不同时间尺度上快速且同时获取顺序信息。