Suppr超能文献

使用无监督机器学习和中性粒细胞相关生物标志物构建新型下肢外周动脉疾病亚型预测模型

Construction of a novel lower-extremity peripheral artery disease subtype prediction model using unsupervised machine learning and neutrophil-related biomarkers.

作者信息

Zhang Lin, Ma Yuanliang, Li Que, Long Zhen, Zhang Jiangfeng, Zhang Zhanman, Qin Xiao

机构信息

The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.

出版信息

Heliyon. 2024 Jan 6;10(2):e24189. doi: 10.1016/j.heliyon.2024.e24189. eCollection 2024 Jan 30.

Abstract

Lower-extremity peripheral artery disease (LE-PAD) is a prevalent circulatory disorder with risks of critical limb ischemia and amputation. This study aimed to develop a prediction model for a novel LE-PAD subtype to predict the severity of the disease and guide personalized interventions. Additionally, LE-PAD pathogenesis involves altered immune microenvironment, we examined the immune differences to elucidate LE-PAD pathogenesis. A total of 460 patients with LE-PAD were enrolled and clustered using unsupervised machine learning algorithms (UMLAs). Logistic regression analyses were performed to screen and identify predictive factors for the novel subtype of LE-PAD and a prediction model was built. We performed a comparative analysis regarding neutrophil levels in different subgroups of patients and an immune cell infiltration analysis to explore the associations between neutrophil levels and LE-PAD. Through hematoxylin and eosin (H&E) staining of lower-extremity arteries, neutrophil infiltration in patients with and without LE-PAD was compared. We found that UMLAs can helped in constructing a prediction model for patients with novel LE-PAD subtypes which enabled risk stratification for patients with LE-PAD using routinely available clinical data to assist clinical decision-making and improve personalized management for patients with LE-PAD. Additionally, the results indicated the critical role of neutrophil infiltration in LE-PAD pathogenesis.

摘要

下肢外周动脉疾病(LE-PAD)是一种常见的循环系统疾病,存在肢体严重缺血和截肢风险。本研究旨在开发一种针对新型LE-PAD亚型的预测模型,以预测疾病严重程度并指导个性化干预。此外,LE-PAD的发病机制涉及免疫微环境改变,我们研究了免疫差异以阐明LE-PAD的发病机制。共纳入460例LE-PAD患者,并使用无监督机器学习算法(UMLAs)进行聚类。进行逻辑回归分析以筛选和识别新型LE-PAD亚型的预测因素,并建立预测模型。我们对患者不同亚组的中性粒细胞水平进行了比较分析,并进行了免疫细胞浸润分析,以探讨中性粒细胞水平与LE-PAD之间的关联。通过对下肢动脉进行苏木精-伊红(H&E)染色,比较了有和没有LE-PAD患者的中性粒细胞浸润情况。我们发现,UMLAs有助于构建新型LE-PAD亚型患者的预测模型,该模型能够利用常规可用的临床数据对LE-PAD患者进行风险分层,以协助临床决策并改善LE-PAD患者的个性化管理。此外,结果表明中性粒细胞浸润在LE-PAD发病机制中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1608/10827514/77b0a8646705/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验