Suppr超能文献

一种基于双向密集连接和注意力机制的多尺度颌骨囊肿分割模型:AConvLSTM U-Net

[AConvLSTM U-Net: a multi-scale jaw cyst segmentation model based on bidirectional dense connection and attention mechanism].

作者信息

Li Suqiang, Wang Zhouyang, Chan Sixian, Zhou Xiaolong

机构信息

School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China.

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2025 May 20;45(5):1082-1092. doi: 10.12122/j.issn.1673-4254.2025.05.22.

Abstract

OBJECTIVES

We propose a multi-scale jaw cyst segmentation model, AConvLSTM U-Net, which is based on bidirectional dense connections and attention mechanisms to achieve accurate automatic segmentation of mandibular cyst images.

METHODS

A dataset consisting of 2592 jaw cyst images was used. AConvLSTM U-Net designs a MBC on the encoding path to enhance feature extraction capabilities. A DPD was used to connect the encoder and decoder, and a bidirectional ConvLSTM was introduced in the jump connection to obtain rich semantic information. A decoding block based on scSE was then used on the decoding path to enhance the focus on important information. Finally, a DS was designed, and the model was optimized by integrating a joint loss function to further improve the segmentation accuracy.

RESULTS

The experiment with AConvLSTM U-Net for jaw cyst lesion segmentation showed a MCC of 93.8443%, a DSC of 93.9067%, and a JSC of 88.5133%, outperforming all the other comparison segmentation models.

CONCLUSIONS

The proposed algorithm shows a high accuracy and robustness on the jaw cyst dataset, demonstrating its superior performance over many existing methods for automatic segmentation of jaw cyst images and its potential to assist clinical diagnosis.

摘要

目的

我们提出了一种多尺度颌骨囊肿分割模型,即AConvLSTM U-Net,它基于双向密集连接和注意力机制,以实现下颌囊肿图像的准确自动分割。

方法

使用了一个由2592张颌骨囊肿图像组成的数据集。AConvLSTM U-Net在编码路径上设计了一个MBC以增强特征提取能力。使用一个DPD连接编码器和解码器,并在跳跃连接中引入双向ConvLSTM以获取丰富的语义信息。然后在解码路径上使用基于scSE的解码块来增强对重要信息的关注。最后,设计了一个DS,并通过集成联合损失函数对模型进行优化,以进一步提高分割精度。

结果

使用AConvLSTM U-Net进行颌骨囊肿病变分割的实验显示,MCC为93.8443%,DSC为93.9067%,JSC为88.5133%,优于所有其他比较分割模型。

结论

所提出的算法在颌骨囊肿数据集上显示出高准确性和鲁棒性,证明了其相对于许多现有的颌骨囊肿图像自动分割方法的优越性能及其辅助临床诊断的潜力。

相似文献

1
[AConvLSTM U-Net: a multi-scale jaw cyst segmentation model based on bidirectional dense connection and attention mechanism].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 May 20;45(5):1082-1092. doi: 10.12122/j.issn.1673-4254.2025.05.22.
3
4
Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction.
Med Phys. 2021 Jul;48(7):3827-3841. doi: 10.1002/mp.14944. Epub 2021 Jun 16.
5
ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation.
Med Biol Eng Comput. 2024 Jun;62(6):1673-1687. doi: 10.1007/s11517-024-03025-y. Epub 2024 Feb 8.
6
MARes-Net: multi-scale attention residual network for jaw cyst image segmentation.
Front Bioeng Biotechnol. 2024 Aug 5;12:1454728. doi: 10.3389/fbioe.2024.1454728. eCollection 2024.
7
CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
Med Phys. 2022 Aug;49(8):5294-5303. doi: 10.1002/mp.15719. Epub 2022 Jun 21.
8
A dual-decoder banded convolutional attention network for bone segmentation in ultrasound images.
Med Phys. 2025 Mar;52(3):1556-1572. doi: 10.1002/mp.17545. Epub 2024 Dec 9.
9
ADR-Net: Context extraction network based on M-Net for medical image segmentation.
Med Phys. 2020 Sep;47(9):4254-4264. doi: 10.1002/mp.14364. Epub 2020 Aug 2.

本文引用的文献

1
MARes-Net: multi-scale attention residual network for jaw cyst image segmentation.
Front Bioeng Biotechnol. 2024 Aug 5;12:1454728. doi: 10.3389/fbioe.2024.1454728. eCollection 2024.
2
Automatic segmentation of the maxillary sinus on cone beam computed tomographic images with U-Net deep learning model.
Eur Arch Otorhinolaryngol. 2024 Nov;281(11):6111-6121. doi: 10.1007/s00405-024-08870-z. Epub 2024 Jul 31.
4
Epidemiological analysis of the clinicopathologic characteristics, treatment, and prognosis of 2648 jaw cysts in West China.
Chin Med J (Engl). 2024 May 5;137(9):1124-1126. doi: 10.1097/CM9.0000000000003054. Epub 2024 Mar 21.
5
[Multi-phase CT synthesis-assisted segmentation of abdominal organs].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Jan 20;44(1):83-92. doi: 10.12122/j.issn.1673-4254.2024.01.10.
6
Automatic tooth periodontal ligament segmentation of cone beam computed tomography based on instance segmentation network.
Heliyon. 2024 Jan 9;10(2):e24097. doi: 10.1016/j.heliyon.2024.e24097. eCollection 2024 Jan 30.
7
Segment anything in medical images.
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
8
Automatic segmentation of ameloblastoma on ct images using deep learning with limited data.
BMC Oral Health. 2024 Jan 9;24(1):55. doi: 10.1186/s12903-023-03587-7.
10
[Advanced Faster RCNN: a non-contrast CT-based algorithm for detecting pancreatic lesions in multiple disease stages].
Nan Fang Yi Ke Da Xue Xue Bao. 2023 May 20;43(5):755-763. doi: 10.12122/j.issn.1673-4254.2023.05.11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验