National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China.
Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China.
Comp Biochem Physiol Part D Genomics Proteomics. 2024 Mar;49:101196. doi: 10.1016/j.cbd.2024.101196. Epub 2024 Jan 27.
Temperature is a limiting factor in the growth of aquatic organisms and can directly affect many chemical and biological processes, including metabolic enzyme activity, aerobic respiration, and signal transduction. In this study, physiological, transcriptomic, and metabolomic analyses were performed to characterize the response of Litopenaeus vannamei to cold stress. We subjected L. vannamei to gradually decreasing temperatures (24 °C, 20 °C, 18 °C, 14 °C, and 12 °C) and studied the changes in the hepatopancreas. The results showed that extreme cold stress (12 °C) caused structural damage to the hepatopancreas of L. vannamei. However, shrimp exhibited response mechanisms to enhance cold tolerance, through regulating changes in key genes and metabolites in amino acid, lipid metabolism, and carbohydrate metabolism, including (a) increased level of methylation in cells to enhance cold tolerance; (b) increased content of critical amino acids, such as proline, alanine, glutamic acid and taurine, to ameliorate energy metabolism, protect cells from cold-induced osmotic imbalance, and promote ion transport and DNA repair; (c) accumulation of unsaturated fatty acids to improve cell membrane fluidity; and (d) regulation of the metabolic pattern shift to rely on anaerobic metabolism with a gradual decrease in aerobic metabolism and enhance glycolysis to produce enough ATP to maintain energy metabolic balance. When the temperature dropped further, cold stress impaired antioxidant and immune defense responses in shrimp. This study provides an integrated analysis of the physiology, transcriptome, and metabolome of L. vannamei in response to cold stress.
温度是水生生物生长的限制因素,它可以直接影响许多化学和生物过程,包括代谢酶活性、有氧呼吸和信号转导。在这项研究中,我们对凡纳滨对虾进行了生理、转录组和代谢组学分析,以研究其对低温胁迫的反应。我们逐渐降低凡纳滨对虾的温度(24°C、20°C、18°C、14°C和 12°C),并研究了对虾肝胰腺的变化。结果表明,极端寒冷胁迫(12°C)导致凡纳滨对虾肝胰腺结构受损。然而,虾表现出了增强耐冷性的反应机制,通过调节氨基酸、脂质代谢和碳水化合物代谢中关键基因和代谢物的变化,包括(a)增加细胞内的甲基化水平以增强耐冷性;(b)增加脯氨酸、丙氨酸、谷氨酸和牛磺酸等关键氨基酸的含量,以改善能量代谢,保护细胞免受低温诱导的渗透失衡,并促进离子运输和 DNA 修复;(c)积累不饱和脂肪酸以改善细胞膜流动性;以及(d)调节代谢模式的转变,依靠无氧代谢,随着有氧代谢的逐渐减少,促进糖酵解以产生足够的 ATP 来维持能量代谢平衡。当温度进一步下降时,低温胁迫会损害虾的抗氧化和免疫防御反应。本研究对凡纳滨对虾在低温胁迫下的生理、转录组和代谢组进行了综合分析。