College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
Math Biosci. 2024 Mar;369:109154. doi: 10.1016/j.mbs.2024.109154. Epub 2024 Jan 29.
In this paper, we present a virus infection model that incorporates eclipse-stage and Beddington-DeAngelis function, along with perturbation in infection rate using logarithmic Ornstein-Uhlenbeck process. Rigorous analysis demonstrates that the stochastic model has a unique global solution. Through construction of appropriate Lyapunov functions and a compact set, combined with the strong law of numbers and Fatou's lemma, we obtain the existence of the stationary distribution under a critical condition, which indicates the long-term persistence of T-cells and virions. Moreover, a precise probability density function is derived around the quasi-equilibrium of the model, and spectral radius analysis is employed to identify critical condition for elimination of the virus. Finally, numerical simulations are presented to validate theoretical results, and the impact of some key parameters such as the speed of reversion, volatility intensity and mean infection rate are investigated.
本文提出了一种病毒感染模型,该模型结合了潜伏期和 Beddington-DeAngelis 函数,并使用对数 Ornstein-Uhlenbeck 过程对感染率进行了摄动。严格的分析表明,随机模型具有唯一的全局解。通过构造适当的李雅普诺夫函数和紧集,并结合大数定律和 Fatou 引理,我们在临界条件下得到了平稳分布的存在性,这表明 T 细胞和病毒的长期持续存在。此外,我们推导出了模型准平衡态附近的精确概率密度函数,并通过谱半径分析确定了消除病毒的临界条件。最后,通过数值模拟验证了理论结果,并研究了一些关键参数(如回复速度、波动率强度和平均感染率)的影响。