Suppr超能文献

具有饱和恢复率和奥恩斯坦-乌伦贝克过程的随机SIB霍乱模型分析

Analysis of a stochastic SIB cholera model with saturation recovery rate and Ornstein-Uhlenbeck process.

作者信息

Wen Buyu, Liu Bing, Cui Qianqian

机构信息

School of Information Engineering, Liaodong University, Dandong 118003, Liaoning, China.

School of Mathematics and Information Science, Anshan Normal University, Anshan 114007, Liaoning, China.

出版信息

Math Biosci Eng. 2023 May 6;20(7):11644-11655. doi: 10.3934/mbe.2023517.

Abstract

In this paper, a stochastic SIB(Susceptible-Infected-Vibrios) cholera model with saturation recovery rate and Ornstein-Uhlenbeck process is investigated. It is proved that there is a unique global solution for any initial value of the model. Furthermore, the sufficient criterion of the stationary distribution of the model is obtained by constructing a suitable Lyapunov function, and the expression of probability density function is calculated by the same condition. The correctness of the theoretical results is verified by numerical simulation, and the specific expression of the marginal probability density function is obtained.

摘要

本文研究了一个具有饱和恢复率和奥恩斯坦-乌伦贝克过程的随机SIB(易感-感染-弧菌)霍乱模型。证明了该模型对于任意初始值都存在唯一的全局解。此外,通过构造合适的李雅普诺夫函数得到了模型平稳分布的充分判据,并在相同条件下计算了概率密度函数的表达式。通过数值模拟验证了理论结果的正确性,并得到了边际概率密度函数的具体表达式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验