Suppr超能文献

利用2001年至2018年的气候指标对莫桑比克疟疾发病率进行时空建模与预测

Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018.

作者信息

Armando Chaibo Jose, Rocklöv Joacim, Sidat Mohsin, Tozan Yesim, Mavume Alberto Francisco, Sewe Maquins Odhiambo

机构信息

Department of Public Health and Clinical Medicine, Sustainable Health Section Umeå University, Umeå, Sweden.

Center for African Studies, Eduardo Mondlane University, Maputo, Mozambique.

出版信息

Sci Rep. 2025 Apr 8;15(1):11971. doi: 10.1038/s41598-025-97072-6.

Abstract

Accurate malaria predictions are essential for implementing timely interventions, particularly in Mozambique, where climate factors strongly influence transmission. This study aims to develop and evaluate a spatial-temporal prediction model for malaria incidence in Mozambique for potential use in a malaria early warning system (MEWS). We used monthly data on malaria cases from 2001 to 2018 in Mozambique, the model incorporated lagged climate variables selected through Deviance Information Criterion (DIC), including mean temperature and precipitation (1-2 months), relative humidity (5-6 months), and Normalized Different Vegetation Index (NDVI) (3-4 months). Predictive distributions from monthly cross-validations were employed to calculate threshold exceedance probabilities, with district-specific thresholds set at the 75th percentile of historical monthly malaria incidence. The model's ability to predict high and low malaria seasons was evaluated using receiver operating characteristic (ROC) analysis. Results indicated that malaria incidence in Mozambique peaks from November to April, offering a predictive lead time of up to 4 months. The model demonstrated high predictive power with an area under the curve (AUC) of 0.897 (0.893-0.901), sensitivity of 0.835 (0.827-0.843), and specificity of 0.793 (0.787-0.798), underscoring its suitability for integration into a MEWS. Thus, incorporating climate information within a multisectoral approach is essential for enhancing malaria prevention interventions effectiveness.

摘要

准确的疟疾预测对于及时采取干预措施至关重要,特别是在莫桑比克,气候因素对疟疾传播有强烈影响。本研究旨在开发和评估莫桑比克疟疾发病率的时空预测模型,以供疟疾早期预警系统(MEWS)潜在使用。我们使用了莫桑比克2001年至2018年的月度疟疾病例数据,该模型纳入了通过离差信息准则(DIC)选择的滞后气候变量,包括平均温度和降水量(1 - 2个月)、相对湿度(5 - 6个月)以及归一化植被指数(NDVI)(3 - 4个月)。通过每月交叉验证的预测分布来计算阈值超过概率,特定地区的阈值设定为历史月度疟疾发病率的第75百分位数。使用受试者工作特征(ROC)分析评估该模型预测疟疾高发和低发季节的能力。结果表明,莫桑比克的疟疾发病率在11月至次年4月达到峰值,预测提前期可达4个月。该模型显示出较高的预测能力,曲线下面积(AUC)为0.897(0.893 - 0.901),灵敏度为0.835(0.827 - 0.843),特异性为0.793(0.787 - 0.798),突出了其适用于纳入疟疾早期预警系统。因此,在多部门方法中纳入气候信息对于提高疟疾预防干预措施的有效性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/926f/11978812/2a15dab8b123/41598_2025_97072_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验