Armando Chaibo Jose, Rocklöv Joacim, Sidat Mohsin, Tozan Yesim, Mavume Alberto Francisco, Sewe Maquins Odhiambo
Department of Public Health and Clinical Medicine, Sustainable Health Section Umeå University, Umeå, Sweden.
Center for African Studies, Eduardo Mondlane University, Maputo, Mozambique.
Sci Rep. 2025 Apr 8;15(1):11971. doi: 10.1038/s41598-025-97072-6.
Accurate malaria predictions are essential for implementing timely interventions, particularly in Mozambique, where climate factors strongly influence transmission. This study aims to develop and evaluate a spatial-temporal prediction model for malaria incidence in Mozambique for potential use in a malaria early warning system (MEWS). We used monthly data on malaria cases from 2001 to 2018 in Mozambique, the model incorporated lagged climate variables selected through Deviance Information Criterion (DIC), including mean temperature and precipitation (1-2 months), relative humidity (5-6 months), and Normalized Different Vegetation Index (NDVI) (3-4 months). Predictive distributions from monthly cross-validations were employed to calculate threshold exceedance probabilities, with district-specific thresholds set at the 75th percentile of historical monthly malaria incidence. The model's ability to predict high and low malaria seasons was evaluated using receiver operating characteristic (ROC) analysis. Results indicated that malaria incidence in Mozambique peaks from November to April, offering a predictive lead time of up to 4 months. The model demonstrated high predictive power with an area under the curve (AUC) of 0.897 (0.893-0.901), sensitivity of 0.835 (0.827-0.843), and specificity of 0.793 (0.787-0.798), underscoring its suitability for integration into a MEWS. Thus, incorporating climate information within a multisectoral approach is essential for enhancing malaria prevention interventions effectiveness.
准确的疟疾预测对于及时采取干预措施至关重要,特别是在莫桑比克,气候因素对疟疾传播有强烈影响。本研究旨在开发和评估莫桑比克疟疾发病率的时空预测模型,以供疟疾早期预警系统(MEWS)潜在使用。我们使用了莫桑比克2001年至2018年的月度疟疾病例数据,该模型纳入了通过离差信息准则(DIC)选择的滞后气候变量,包括平均温度和降水量(1 - 2个月)、相对湿度(5 - 6个月)以及归一化植被指数(NDVI)(3 - 4个月)。通过每月交叉验证的预测分布来计算阈值超过概率,特定地区的阈值设定为历史月度疟疾发病率的第75百分位数。使用受试者工作特征(ROC)分析评估该模型预测疟疾高发和低发季节的能力。结果表明,莫桑比克的疟疾发病率在11月至次年4月达到峰值,预测提前期可达4个月。该模型显示出较高的预测能力,曲线下面积(AUC)为0.897(0.893 - 0.901),灵敏度为0.835(0.827 - 0.843),特异性为0.793(0.787 - 0.798),突出了其适用于纳入疟疾早期预警系统。因此,在多部门方法中纳入气候信息对于提高疟疾预防干预措施的有效性至关重要。