Suppr超能文献

整合机器学习与空间聚类用于巴西法定亚马逊地区的疟疾病例预测。

Integrating machine learning and spatial clustering for malaria case prediction in Brazil's Legal Amazon.

作者信息

Monteiro Kayo Henrique de Carvalho, da Silva Rocha Élisson, Morais Luis Augusto, Santos Elton Gino, Neto Sebastião Rogerio da S, Sampaio Vanderson, Endo Patricia Takako

机构信息

Programa de Pós-graduação em Engenharia da Computação, Universidade de Pernambuco, Pernambuco, Brasil.

Centro Universitário Unifavip Wyden, Pernambuco, Brasil.

出版信息

BMC Infect Dis. 2025 Jun 8;25(1):802. doi: 10.1186/s12879-025-11193-x.

Abstract

Malaria remains a major global health challenge, particularly in Brazil's Legal Amazon region, where environmental and socioeconomic conditions foster favorable conditions for disease transmission. Traditional control measures have shown limited effectiveness, emphasizing the need for better predictive approaches to support timely and targeted public health interventions. This study evaluates the performance of six computational models-Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), Support Vector Regression (SVR), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Autoregressive Integrated Moving Average (ARIMA)-for forecasting weekly malaria cases across multiple states in the Legal Amazon. The results demonstrate that the RF model consistently outperformed the other models, achieving the lowest Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values in most cases, such as in cluster 02 of the state of Acre, with RMSE of 0.00203 and MAE of 0.00133. The integration of K-means clustering further improved the model predictive accuracy by accounting for spatial heterogeneity and capturing localized transmission dynamics. This hybrid modeling approach, combining machine learning models with spatial clustering, offers a promising tool for enhancing malaria surveillance and guiding more effective public health strategies, especially for malaria control efforts in high-risk regions.

摘要

疟疾仍然是一项重大的全球卫生挑战,尤其是在巴西的合法亚马逊地区,该地区的环境和社会经济条件为疾病传播创造了有利条件。传统的控制措施效果有限,这凸显了采用更好的预测方法以支持及时且有针对性的公共卫生干预措施的必要性。本研究评估了六种计算模型——长短期记忆网络(LSTM)、门控循环单元(GRU)、支持向量回归(SVR)、随机森林(RF)、极端梯度提升(XGBoost)和自回归积分移动平均(ARIMA)——对合法亚马逊地区多个州每周疟疾病例的预测性能。结果表明,随机森林模型始终优于其他模型,在大多数情况下,如在阿克里州的第02集群,其均方根误差(RMSE)和平均绝对误差(MAE)值最低,RMSE为0.00203,MAE为0.00133。K均值聚类的整合通过考虑空间异质性并捕捉局部传播动态,进一步提高了模型的预测准确性。这种将机器学习模型与空间聚类相结合的混合建模方法,为加强疟疾监测和指导更有效的公共卫生策略提供了一个有前景的工具,特别是对于高风险地区的疟疾控制工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea1/12147289/c2e7f26e04d9/12879_2025_11193_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验