Lv Xinna, Li Ye, Wang Bing, Wang Yichuan, Xu Zexuan, Hou Dailun
Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
Eur J Radiol Open. 2024 Jan 16;12:100548. doi: 10.1016/j.ejro.2024.100548. eCollection 2024 Jun.
Kirsten rat sarcoma virus (KRAS) has evolved from a genotype with predictive value to a therapeutic target recently. The study aimed to establish non-invasive radiomics models based on MRI to discriminate KRAS from epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations in lung cancer patients with brain metastases (BM), then further explore the optimal sequence for prediction.
This retrospective study involved 317 patients (218 patients in training cohort and 99 patients in testing cohort) who had confirmed of KRAS, EGFR or ALK mutations. Radiomics features were separately extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences. The maximal information coefficient and recursive feature elimination method were used to select informative features. Then we built four radiomics models for differentiating KRAS from EGFR or ALK using random forest classifier. ROC curves were used to validate the capability of the models.
The four radiomics models for discriminating KRAS from EGFR all worked well, especially DWI and T2WI models (AUCs: 0.942, 0.942 in training cohort, 0.949, 0.954 in testing cohort). When KRAS compared to ALK, DWI and T2-FLAIR models showed excellent performance in two cohorts (AUCs: 0.947, 0.917 in training cohort, 0.850, 0.824 in testing cohort).
Radiomics classifiers integrating MRI have potential to discriminate KRAS from EGFR or ALK, which are helpful to guide treatment and facilitate the discovery of new approaches capable of achieving this long-sought goal of cure in lung cancer patients with KRAS.
Kirsten大鼠肉瘤病毒(KRAS)最近已从具有预测价值的基因型演变为治疗靶点。本研究旨在建立基于MRI的非侵入性放射组学模型,以区分肺癌脑转移(BM)患者中的KRAS与表皮生长因子受体(EGFR)或间变性淋巴瘤激酶(ALK)突变,然后进一步探索预测的最佳序列。
这项回顾性研究纳入了317例确诊为KRAS、EGFR或ALK突变的患者(训练队列218例,测试队列99例)。分别从T2加权成像(T2WI)、T2液体衰减反转恢复序列(T2-FLAIR)、扩散加权成像(DWI)和对比增强T1加权成像(T1-CE)序列中提取放射组学特征。采用最大信息系数和递归特征消除方法选择信息特征。然后我们使用随机森林分类器建立了四个区分KRAS与EGFR或ALK的放射组学模型。ROC曲线用于验证模型的能力。
四个区分KRAS与EGFR的放射组学模型均表现良好,尤其是DWI和T2WI模型(训练队列中的AUC分别为0.942、0.942,测试队列中的AUC分别为0.949、0.954)。当KRAS与ALK比较时,DWI和T2-FLAIR模型在两个队列中均表现出色(训练队列中的AUC分别为0.947、0.917,测试队列中的AUC分别为0.850、0.824)。
整合MRI的放射组学分类器有潜力区分KRAS与EGFR或ALK,这有助于指导治疗,并促进发现能够实现KRAS肺癌患者长期治愈这一目标的新方法。