Suppr超能文献

DSCA-PSPNet:用于卫星图像中甘蔗田分割的动态空间通道注意力金字塔场景解析网络

DSCA-PSPNet: Dynamic spatial-channel attention pyramid scene parsing network for sugarcane field segmentation in satellite imagery.

作者信息

Yuan Yujian, Yang Lina, Chang Kan, Huang Youju, Yang Haoyan, Wang Jiale

机构信息

School of Computer, Electronics, and Information, Guangxi University, Nanning, China.

Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics, and Information, Guangxi University, Nanning, China.

出版信息

Front Plant Sci. 2024 Jan 17;14:1324491. doi: 10.3389/fpls.2023.1324491. eCollection 2023.

Abstract

Sugarcane plays a vital role in many global economies, and its efficient cultivation is critical for sustainable development. A central challenge in sugarcane yield prediction and cultivation management is the precise segmentation of sugarcane fields from satellite imagery. This task is complicated by numerous factors, including varying environmental conditions, scale variability, and spectral similarities between crops and non-crop elements. To address these segmentation challenges, we introduce DSCA-PSPNet, a novel deep learning model with a unique architecture that combines a modified ResNet34 backbone, the Pyramid Scene Parsing Network (PSPNet), and newly proposed Dynamic Squeeze-and-Excitation Context (D-scSE) blocks. Our model effectively adapts to discern the importance of both spatial and channel-wise information, providing superior feature representation for sugarcane fields. We have also created a comprehensive high-resolution satellite imagery dataset from Guangxi's Fusui County, captured on December 17, 2017, which encompasses a broad spectrum of sugarcane field characteristics and environmental conditions. In comparative studies, DSCA-PSPNet outperforms other state-of-the-art models, achieving an Intersection over Union (IoU) of 87.58%, an accuracy of 92.34%, a precision of 93.80%, a recall of 93.21%, and an F1-Score of 92.38%. Application tests on an RTX 3090 GPU, with input image resolutions of 512 × 512, yielded a prediction time of 4.57ms, a parameter size of 22.57MB, GFLOPs of 11.41, and a memory size of 84.47MB. An ablation study emphasized the vital role of the D-scSE module in enhancing DSCA-PSPNet's performance. Our contributions in dataset generation and model development open new avenues for tackling the complexities of sugarcane field segmentation, thus contributing to advances in precision agriculture. The source code and dataset will be available on the GitHub repository https://github.com/JulioYuan/DSCA-PSPNet/tree/main.

摘要

甘蔗在许多全球经济体中发挥着至关重要的作用,其高效种植对于可持续发展至关重要。甘蔗产量预测和种植管理中的一个核心挑战是从卫星图像中精确分割甘蔗田。这项任务因众多因素而变得复杂,包括变化的环境条件、尺度变异性以及作物与非作物元素之间的光谱相似性。为了解决这些分割挑战,我们引入了DSCA - PSPNet,这是一种新颖的深度学习模型,具有独特的架构,它结合了改进的ResNet34骨干、金字塔场景解析网络(PSPNet)和新提出的动态挤压与激励上下文(D - scSE)块。我们的模型有效地适应以辨别空间和通道信息的重要性,为甘蔗田提供卓越的特征表示。我们还从广西扶绥县创建了一个全面的高分辨率卫星图像数据集,该数据集于2017年12月17日拍摄,涵盖了广泛的甘蔗田特征和环境条件。在比较研究中,DSCA - PSPNet优于其他先进模型,实现了87.58%的交并比(IoU)、92.34%的准确率、93.80%的精确率、93.21%的召回率以及92.38%的F1分数。在RTX 3090 GPU上进行应用测试,输入图像分辨率为512×512,预测时间为4.57毫秒,参数大小为22.57MB,GFLOPs为11.41,内存大小为84.47MB。一项消融研究强调了D - scSE模块在提升DSCA - PSPNet性能方面的关键作用。我们在数据集生成和模型开发方面的贡献为解决甘蔗田分割的复杂性开辟了新途径,从而推动了精准农业的发展。源代码和数据集将在GitHub仓库https://github.com/JulioYuan/DSCA - PSPNet/tree/main上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ad/10829042/3621b5d976e8/fpls-14-1324491-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验