Zhao Lingyuan, Luo Zifei, Zhou Kuang, Yang Bo, Zhang Yan
Technology Research and Development Center, Huantian Wisdom Technology, Meishan, 620564, China.
Sci Rep. 2024 Sep 6;14(1):20778. doi: 10.1038/s41598-024-71394-3.
Fine-grained management of rice fields can enhance the yield and quality of rice crops. Challenges in achieving fine classification include interference from similar vegetation, the irregularity of natural field shapes, and complex scale variations. This paper introduces Rice Attention Cascade Network (RACNet), for the fine classification of rice fields in high-resolution satellite remote sensing imagery. The network employs the Hybrid Task Cascade network as the base framework and uses spectral and indices mixed multimodal data as input to reinforce the feature differentiation of similar vegetation. Initially, a Channel Attention Deformable-ResNet (CAD-ResNet) was designed to enhance the feature representation of rice on different channels. Deformable convolution improves the ability of CAD-ResNet to capture irregular field shapes. Then, to address the issue of complex scale changes, the multi-scale features extracted by the CAD-ResNet are progressively fused using an Asymptotic Feature Pyramid, reducing the loss of scale information between non-adjacent layers. Experiments on the Meishan rice dataset show that the proposed method is capable of accurate instance segmentation for fragmented or irregularly shaped rice fields. The evaluation metric AP50 of RACNet reaches 50.8%.
稻田的精细化管理可以提高水稻作物的产量和质量。实现精细分类面临的挑战包括来自相似植被的干扰、自然田块形状的不规则性以及复杂的尺度变化。本文介绍了水稻注意力级联网络(RACNet),用于对高分辨率卫星遥感影像中的稻田进行精细分类。该网络采用混合任务级联网络作为基础框架,并使用光谱和指数混合多模态数据作为输入,以增强相似植被的特征区分能力。最初,设计了一种通道注意力可变形残差网络(CAD-ResNet)来增强水稻在不同通道上的特征表示。可变形卷积提高了CAD-ResNet捕捉不规则田块形状的能力。然后,为了解决复杂尺度变化的问题,使用渐近特征金字塔对CAD-ResNet提取的多尺度特征进行逐步融合,减少非相邻层之间的尺度信息损失。在梅山水稻数据集上的实验表明,该方法能够对碎片化或形状不规则的稻田进行准确的实例分割。RACNet的评估指标AP50达到了50.8%。