Suppr超能文献

时间序列模型在中国山东省严重发热伴血小板减少综合征病例预测中的应用

Time series models in prediction of severe fever with thrombocytopenia syndrome cases in Shandong province, China.

作者信息

Wang Zixu, Zhang Wenyi, Wu Ting, Lu Nianhong, He Junyu, Wang Junhu, Rao Jixian, Gu Yuan, Cheng Xianxian, Li Yuexi, Qi Yong

机构信息

Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China.

Bengbu Medical College, Bengbu, Anhui province, 233030, China.

出版信息

Infect Dis Model. 2024 Jan 17;9(1):224-233. doi: 10.1016/j.idm.2024.01.003. eCollection 2024 Mar.

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013-2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.

摘要

发热伴血小板减少综合征(SFTS)是一种由发热伴血小板减少综合征病毒(SFTSV)引起的新发传染病。提前预测该疾病的发病率对于政策制定者制定预防和控制策略至关重要。在本研究中,我们利用中国山东省SFTS的历史发病数据(2013 - 2020年),基于自回归积分滑动平均(ARIMA)和Prophet这两种时间序列预测算法以及一种特殊类型的递归神经网络长短期记忆(LSTM)算法,建立了三个单变量预测模型。然后我们评估并比较了这些模型的性能。所有三个模型对SFTS病例均表现出良好的预测能力,预测结果与实际病例紧密吻合。在这些模型中,LSTM模型表现出最佳的拟合和预测性能。它的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)值最低。还使用该模型生成了该地区未来5年的SFTS病例数。LSTM模型简单实用,为提前评估SFTS的潜在风险提供了有价值的信息和数据。这些信息对于开发预警系统以及制定SFTS的有效预防和控制措施至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e63/10831807/263ad2ebcf8e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验