Wang Zixu, Zhang Jinwei, Zhang Wenyi, Lu Nianhong, Chen Qiong, Wang Junhu, Mao Yingqing, Yi Haiming, Ge Yixin, Wang Hongming, Chen Chao, Guo Wei, Qi Xin, Li Yuexi, Yue Ming, Qi Yong
Huadong Research Institute for Medicine and Biotechniques, Nanjing City, Jiangsu Province, China.
Bengbu Medical College, Bengbu City, Anhui Province, China.
China CDC Wkly. 2024 Sep 13;6(37):962-967. doi: 10.46234/ccdcw2024.200.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.
In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).
Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.
The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.
发热伴血小板减少综合征(SFTS)是由SFTS病毒引起的一种新发传染病,死亡率很高。预测SFTS病例数对于早期疫情预警至关重要,可为制定预防和控制措施提供有价值的见解。
本研究收集了2013年至2020年中国湖北省每月SFTS病例的数据。利用这些历史数据开发了基于季节性自回归积分滑动平均(SARIMA)、Prophet、极端梯度提升(XGBoost)和长短期记忆(LSTM)的各种时间序列模型,以预测SFTS病例。使用平均绝对误差(MAE)和均方根误差(RMSE)对建立的模型进行评估和比较。
开发了四个模型,在预测SFTS病例趋势方面表现良好。XGBoost模型优于其他模型,与实际病例数拟合度最高,在捕捉季节性趋势和预测湖北省每月SFTS病例数方面,MAE最小(2.54),RMSE最小(2.89)。
所开发的XGBoost模型是中国湖北省SFTS预测和预警的一种有前景且有价值的工具。