Suppr超能文献

时间序列模型在预测血小板减少综合征伴严重发热病例中的发展与比较——中国湖北省,2013 - 2020年

Development and Comparison of Time Series Models in Predicting Severe Fever with Thrombocytopenia Syndrome Cases - Hubei Province, China, 2013-2020.

作者信息

Wang Zixu, Zhang Jinwei, Zhang Wenyi, Lu Nianhong, Chen Qiong, Wang Junhu, Mao Yingqing, Yi Haiming, Ge Yixin, Wang Hongming, Chen Chao, Guo Wei, Qi Xin, Li Yuexi, Yue Ming, Qi Yong

机构信息

Huadong Research Institute for Medicine and Biotechniques, Nanjing City, Jiangsu Province, China.

Bengbu Medical College, Bengbu City, Anhui Province, China.

出版信息

China CDC Wkly. 2024 Sep 13;6(37):962-967. doi: 10.46234/ccdcw2024.200.

Abstract

INTRODUCTION

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.

METHODS

In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).

RESULTS

Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.

CONCLUSION

The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.

摘要

引言

发热伴血小板减少综合征(SFTS)是由SFTS病毒引起的一种新发传染病,死亡率很高。预测SFTS病例数对于早期疫情预警至关重要,可为制定预防和控制措施提供有价值的见解。

方法

本研究收集了2013年至2020年中国湖北省每月SFTS病例的数据。利用这些历史数据开发了基于季节性自回归积分滑动平均(SARIMA)、Prophet、极端梯度提升(XGBoost)和长短期记忆(LSTM)的各种时间序列模型,以预测SFTS病例。使用平均绝对误差(MAE)和均方根误差(RMSE)对建立的模型进行评估和比较。

结果

开发了四个模型,在预测SFTS病例趋势方面表现良好。XGBoost模型优于其他模型,与实际病例数拟合度最高,在捕捉季节性趋势和预测湖北省每月SFTS病例数方面,MAE最小(2.54),RMSE最小(2.89)。

结论

所开发的XGBoost模型是中国湖北省SFTS预测和预警的一种有前景且有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0d/11427339/5d9a1a4ed97b/ccdcw-6-37-962-1.jpg

相似文献

本文引用的文献

1
Innovative applications of artificial intelligence during the COVID-19 pandemic.人工智能在新冠疫情期间的创新应用。
Infect Med (Beijing). 2024 Feb 21;3(1):100095. doi: 10.1016/j.imj.2024.100095. eCollection 2024 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验