Suppr超能文献

用于临床直线加速器上安全精确地进行FLASH放射治疗的束流控制系统及输出微调。

Beam control system and output fine-tuning for safe and precise delivery of FLASH radiotherapy at a clinical linear accelerator.

作者信息

Konradsson Elise, Wahlqvist Pontus, Thoft Andreas, Blad Börje, Bäck Sven, Ceberg Crister, Petersson Kristoffer

机构信息

Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden.

Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.

出版信息

Front Oncol. 2024 Jan 18;14:1342488. doi: 10.3389/fonc.2024.1342488. eCollection 2024.

Abstract

INTRODUCTION

We have previously adapted a clinical linear accelerator (Elekta Precise, Elekta AB) for ultra-high dose rate (UHDR) electron delivery. To enhance reliability in future clinical FLASH radiotherapy trials, the aim of this study was to introduce and evaluate an upgraded beam control system and beam tuning process for safe and precise UHDR delivery.

MATERIALS AND METHODS

The beam control system is designed to interrupt the beam based on 1) a preset number of monitor units (MUs) measured by a monitor detector, 2) a preset number of pulses measured by a pulse-counting diode, or 3) a preset delivery time. For UHDR delivery, an optocoupler facilitates external control of the accelerator's thyratron trigger pulses. A beam tuning process was established to maximize the output. We assessed the stability of the delivery, and the independent interruption capabilities of the three systems (monitor detector, pulse counter, and timer). Additionally, we explored a novel approach to enhance dosimetric precision in the delivery by synchronizing the trigger pulse with the charging cycle of the pulse forming network (PFN).

RESULTS

Improved beam tuning of gun current and magnetron frequency resulted in average dose rates at the dose maximum at isocenter distance of >160 Gy/s or >200 Gy/s, with or without an external monitor chamber in the beam path, respectively. The delivery showed a good repeatability (standard deviation (SD) in total film dose of 2.2%) and reproducibility (SD in film dose of 2.6%). The estimated variation in DPP resulted in an SD of 1.7%. The output in the initial pulse depended on the PFN delay time. Over the course of 50 measurements employing PFN synchronization, the absolute percentage error between the delivered number of MUs calculated by the monitor detector and the preset MUs was 0.8 ± 0.6% (mean ± SD).

CONCLUSION

We present an upgraded beam control system and beam tuning process for safe and stable UHDR electron delivery of hundreds of Gy/s at isocenter distance at a clinical linac. The system can interrupt the beam based on monitor units and utilize PFN synchronization for improved dosimetric precision in the dose delivery, representing an important advancement toward reliable clinical FLASH trials.

摘要

引言

我们之前对一台临床直线加速器(医科达Precise,医科达公司)进行了改造,用于超高剂量率(UHDR)电子束照射。为提高未来临床FLASH放疗试验的可靠性,本研究旨在引入并评估一种升级的束流控制系统和束流调谐过程,以实现安全、精确的UHDR照射。

材料与方法

束流控制系统设计为基于以下条件中断束流:1)由监测探测器测量的预设监测单位(MU)数量;2)由脉冲计数二极管测量的预设脉冲数量;3)预设照射时间。对于UHDR照射,光耦合器便于对加速器的闸流管触发脉冲进行外部控制。建立了束流调谐过程以最大化输出。我们评估了照射的稳定性以及三个系统(监测探测器、脉冲计数器和定时器)的独立中断能力。此外,我们探索了一种通过使触发脉冲与脉冲形成网络(PFN)的充电周期同步来提高照射剂量精度的新方法。

结果

枪电流和磁控管频率的束流调谐改进,分别在束流路径中有或无外部监测室的情况下,在等中心距离处剂量最大值时产生平均剂量率>160 Gy/s或>200 Gy/s。照射显示出良好的重复性(总胶片剂量的标准偏差(SD)为2.2%)和再现性(胶片剂量的SD为2.6%)。DPP的估计变化导致SD为1.7%。初始脉冲的输出取决于PFN延迟时间。在采用PFN同步的50次测量过程中,监测探测器计算的输送MU数量与预设MU数量之间的绝对百分比误差为0.8±0.6%(平均值±SD)。

结论

我们展示了一种升级的束流控制系统和束流调谐过程,用于在临床直线加速器上等中心距离处安全、稳定地进行数百Gy/s的UHDR电子束照射。该系统可基于监测单位中断束流,并利用PFN同步提高剂量输送的剂量精度,代表了可靠临床FLASH试验的一项重要进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验