Suppr超能文献

用于 FLASH-RT 临床前实施的个体脉搏监测和剂量控制系统。

Individual pulse monitoring and dose control system for pre-clinical implementation of FLASH-RT.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover NH 03755, United States of America.

Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755, United States of America.

出版信息

Phys Med Biol. 2022 Apr 15;67(9). doi: 10.1088/1361-6560/ac5f6f.

Abstract

Existing ultra-high dose rate (UHDR) electron sources lack dose rate independent dosimeters and a calibrated dose control system for accurate delivery. In this study, we aim to develop a custom single-pulse dose monitoring and a real-time dose-based control system for a FLASH enabled clinical linear accelerator (Linac).A commercially available point scintillator detector was coupled to a gated integrating amplifier and a real-time controller for dose monitoring and feedback control loop. The controller was programmed to integrate dose for each radiation pulse and stop the radiation beam when the prescribed dose was delivered. Additionally, the scintillator was mounted in a solid water phantom and placed underneath mice skin fordose monitoring. The scintillator was characterized in terms of its radiation stability, mean dose-rate (Ḋm), and dose per pulse () dependence.Theexhibited a consistent ramp-up period across ∼4-5 pulse. The plastic scintillator was shown to be linear withḊm(40-380 Gy s) and(0.3-1.3 Gy Pulse) to within +/- 3%. However, the plastic scintillator was subject to significant radiation damage (16%/kGy) for the initial 1 kGy and would need to be calibrated frequently. Pulse-counting control was accurately implemented with one-to-one correspondence between the intended and the actual delivered pulses. The dose-based control was sufficient to gate on any pulse of the Linac.dosimetry monitoring with a 1 cm circular cut-out revealed that during the ramp-up period, the averagewas ∼0.045 ± 0.004 Gy Pulse, whereas after the ramp-up it stabilized at 0.65 ± 0.01 Gy Pulse.The tools presented in this study can be used to determine the beam parameter space pertinent to the FLASH effect. Additionally, this study is the first instance of real-time dose-based control for a modified Linac at ultra-high dose rates, which provides insight into the tool required for future clinical translation of FLASH-RT.

摘要

现有的超高剂量率 (UHDR) 电子源缺乏剂量率独立的剂量计和校准的剂量控制系统,无法实现精确输送。在这项研究中,我们旨在为启用 FLASH 的临床直线加速器 (Linac) 开发定制的单次脉冲剂量监测和基于实时剂量的控制系统。

我们将商业上可获得的点闪烁体探测器与门控积分放大器和实时控制器耦合,用于剂量监测和反馈控制回路。该控制器被编程为对每个辐射脉冲进行积分,并在输送规定剂量时停止辐射束。此外,闪烁体被安装在固体水体模中,并置于小鼠皮肤下方进行剂量监测。我们对闪烁体的辐射稳定性、平均剂量率 (Ḋm) 和每个脉冲的剂量 ( ) 依赖性进行了表征。

闪烁体在大约 4-5 个脉冲的时间内表现出一致的上升期。研究表明,塑料闪烁体与Ḋm(40-380 Gy s)和(0.3-1.3 Gy Pulse)呈线性关系,误差在正负 3%以内。然而,塑料闪烁体在最初的 1 kGy 内会受到明显的辐射损伤(16%/kGy),需要经常校准。脉冲计数控制能够准确地实现预期和实际输送脉冲之间的一一对应。基于剂量的控制足以对直线加速器的任何脉冲进行门控。通过在 1 cm 圆形切口中进行剂量学监测,我们发现,在上升期期间,平均剂量为 0.045±0.004 Gy Pulse,而在上升期之后,它稳定在 0.65±0.01 Gy Pulse。

本研究中提出的工具可用于确定与 FLASH 效应相关的束参数空间。此外,这项研究首次在超高剂量率下对改良的直线加速器进行了基于实时剂量的控制,为未来 FLASH-RT 的临床转化提供了所需工具的见解。

相似文献

引用本文的文献

本文引用的文献

9
Treatment of a first patient with FLASH-radiotherapy.首例 FLASH 放疗患者的治疗。
Radiother Oncol. 2019 Oct;139:18-22. doi: 10.1016/j.radonc.2019.06.019. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验