Suppr超能文献

Dockey:一种用于大规模分子对接和虚拟筛选的现代集成工具。

Dockey: a modern integrated tool for large-scale molecular docking and virtual screening.

作者信息

Du Lianming, Geng Chaoyue, Zeng Qianglin, Huang Ting, Tang Jie, Chu Yiwen, Zhao Kelei

机构信息

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China.

Institute for Advanced Study, Chengdu University, Chengdu 610106, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad047.

Abstract

Molecular docking is a structure-based and computer-aided drug design approach that plays a pivotal role in drug discovery and pharmaceutical research. AutoDock is the most widely used molecular docking tool for study of protein-ligand interactions and virtual screening. Although many tools have been developed to streamline and automate the AutoDock docking pipeline, some of them still use outdated graphical user interfaces and have not been updated for a long time. Meanwhile, some of them lack cross-platform compatibility and evaluation metrics for screening lead compound candidates. To overcome these limitations, we have developed Dockey, a flexible and intuitive graphical interface tool with seamless integration of several useful tools, which implements a complete docking pipeline covering molecular sanitization, molecular preparation, paralleled docking execution, interaction detection and conformation visualization. Specifically, Dockey can detect the non-covalent interactions between small molecules and proteins and perform cross-docking between multiple receptors and ligands. It has the capacity to automatically dock thousands of ligands to multiple receptors and analyze the corresponding docking results in parallel. All the generated data will be kept in a project file that can be shared between any systems and computers with the pre-installation of Dockey. We anticipate that these unique characteristics will make it attractive for researchers to conduct large-scale molecular docking without complicated operations, particularly for beginners. Dockey is implemented in Python and freely available at https://github.com/lmdu/dockey.

摘要

分子对接是一种基于结构的计算机辅助药物设计方法,在药物发现和制药研究中起着关键作用。AutoDock是用于研究蛋白质-配体相互作用和虚拟筛选的最广泛使用的分子对接工具。尽管已经开发了许多工具来简化和自动化AutoDock对接流程,但其中一些仍使用过时的图形用户界面,并且长时间未更新。同时,其中一些缺乏用于筛选潜在先导化合物的跨平台兼容性和评估指标。为了克服这些限制,我们开发了Dockey,这是一个灵活且直观的图形界面工具,无缝集成了多个有用的工具,实现了一个完整的对接流程,涵盖分子净化、分子制备、并行对接执行、相互作用检测和构象可视化。具体而言,Dockey可以检测小分子与蛋白质之间的非共价相互作用,并在多个受体和配体之间进行交叉对接。它能够自动将数千个配体对接至多个受体,并并行分析相应的对接结果。所有生成的数据将保存在一个项目文件中,该文件可以在任何预先安装了Dockey的系统和计算机之间共享。我们预计这些独特的特性将使其对研究人员具有吸引力,使他们能够在无需复杂操作的情况下进行大规模分子对接,尤其是对于初学者而言。Dockey用Python实现,可在https://github.com/lmdu/dockey上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验