Suppr超能文献

基于深度学习的扩散张量图像生成模型:一项概念验证研究。

Deep learning-based diffusion tensor image generation model: a proof-of-concept study.

作者信息

Tatekawa Hiroyuki, Ueda Daiju, Takita Hirotaka, Matsumoto Toshimasa, Walston Shannon L, Mitsuyama Yasuhito, Horiuchi Daisuke, Matsushita Shu, Oura Tatsushi, Tomita Yuichiro, Tsukamoto Taro, Shimono Taro, Miki Yukio

机构信息

Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.

出版信息

Sci Rep. 2024 Feb 5;14(1):2911. doi: 10.1038/s41598-024-53278-8.

Abstract

This study created an image-to-image translation model that synthesizes diffusion tensor images (DTI) from conventional diffusion weighted images, and validated the similarities between the original and synthetic DTI. Thirty-two healthy volunteers were prospectively recruited. DTI and DWI were obtained with six and three directions of the motion probing gradient (MPG), respectively. The identical imaging plane was paired for the image-to-image translation model that synthesized one direction of the MPG from DWI. This process was repeated six times in the respective MPG directions. Regions of interest (ROIs) in the lentiform nucleus, thalamus, posterior limb of the internal capsule, posterior thalamic radiation, and splenium of the corpus callosum were created and applied to maps derived from the original and synthetic DTI. The mean values and signal-to-noise ratio (SNR) of the original and synthetic maps for each ROI were compared. The Bland-Altman plot between the original and synthetic data was evaluated. Although the test dataset showed a larger standard deviation of all values and lower SNR in the synthetic data than in the original data, the Bland-Altman plots showed each plot localizing in a similar distribution. Synthetic DTI could be generated from conventional DWI with an image-to-image translation model.

摘要

本研究创建了一种图像到图像的翻译模型,该模型可从传统扩散加权图像合成扩散张量图像(DTI),并验证了原始DTI与合成DTI之间的相似性。前瞻性招募了32名健康志愿者。分别在六个和三个运动探测梯度(MPG)方向上获取DTI和扩散加权成像(DWI)。为从DWI合成MPG一个方向的图像到图像翻译模型配对相同的成像平面。在各个MPG方向上重复此过程六次。在豆状核、丘脑、内囊后肢、丘脑后辐射和胼胝体压部创建感兴趣区域(ROI),并将其应用于从原始DTI和合成DTI得出的图谱。比较每个ROI的原始图谱和合成图谱的平均值及信噪比(SNR)。评估原始数据与合成数据之间的布兰德-奥特曼图。尽管测试数据集显示所有值的标准差更大,且合成数据中的SNR低于原始数据,但布兰德-奥特曼图显示每个图都定位在相似的分布中。利用图像到图像的翻译模型可以从传统DWI生成合成DTI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad72/10844503/0e670549354a/41598_2024_53278_Fig1_HTML.jpg

相似文献

1
Deep learning-based diffusion tensor image generation model: a proof-of-concept study.
Sci Rep. 2024 Feb 5;14(1):2911. doi: 10.1038/s41598-024-53278-8.
2
SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
Neuroimage. 2022 Jun;253:119033. doi: 10.1016/j.neuroimage.2022.119033. Epub 2022 Mar 1.
3
[Comparison of diffusion tensor imaging-derived fractional anisotropy in multiple centers for identical human subjects].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2012;68(9):1242-9. doi: 10.6009/jjrt.2012_jsrt_68.9.1242.
5
Potential of diffusion tensor MRI in the assessment of periventricular leukomalacia.
Clin Radiol. 2006 Apr;61(4):358-64. doi: 10.1016/j.crad.2006.01.001.
7
[Influence exerted by MPG-directions on diffusion tensor imaging (DTI)].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009 Jul 20;65(7):913-20. doi: 10.6009/jjrt.65.913.
10
High b-value diffusion-weighted MR imaging of normal brain at 3T.
Eur J Radiol. 2009 Mar;69(3):454-8. doi: 10.1016/j.ejrad.2007.11.023. Epub 2007 Dec 26.

引用本文的文献

1
QID: An Image-Conditioned Diffusion Model for -space Up-sampling of DWI Data.
Comput Diffus MRI. 2025;15171:119-131. doi: 10.1007/978-3-031-86920-4_11. Epub 2025 Apr 18.

本文引用的文献

2
Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning.
J Vasc Interv Radiol. 2022 Jul;33(7):845-851.e8. doi: 10.1016/j.jvir.2022.03.010. Epub 2022 Mar 17.
4
Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis.
Comput Biol Med. 2021 Sep;136:104763. doi: 10.1016/j.compbiomed.2021.104763. Epub 2021 Aug 18.
5
Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts.
Radiology. 2021 Jun;299(3):675-681. doi: 10.1148/radiol.2021203692. Epub 2021 Mar 30.
6
Technical and clinical overview of deep learning in radiology.
Jpn J Radiol. 2019 Jan;37(1):15-33. doi: 10.1007/s11604-018-0795-3. Epub 2018 Dec 1.
8
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验