Ershadi Mohammad Mahdi, Rise Zeinab Rahimi
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran.
Heliyon. 2024 Jan 26;10(3):e24711. doi: 10.1016/j.heliyon.2024.e24711. eCollection 2024 Feb 15.
The study investigates the significance of employing advanced systemic models in community health management, with a focus on COVID-19 as a respiratory virus. Through the development of a system dynamics model integrating an uncertain SEIAR model, our research addresses the critical issue of parameter uncertainty using Ensemble Kalman Filter (EnKF) and Metropolis-Hastings (MH) algorithms. We present a case study using real COVID-19 outbreaks in Iran, offering insights into effective outbreak control scenarios and considering the global impact of respiratory viruses. The research yields distinctive results, showcasing variable mortality rates (40,500 to 436,500) across scenarios in Iran. Model accuracy is rigorously evaluated using the Normalized Root-Mean-Square Deviation (NRMSD) for new cases, deaths, and recoveries (0.2 %, 1.2 %, and 0.6 % respectively). The outcomes not only contribute to the existing body of knowledge but also offer practical implications for healthcare policies, economic considerations, and sensitivity assessments related to respiratory diseases. This study stands out from others in its approach to modeling and addressing uncertainty within a system dynamics framework. The integration of EnKF and MH algorithms provides a nuanced understanding of parameter uncertainty, adding a layer of sophistication to the analysis. The application of the model to real-world COVID-19 outbreaks in Iran further enhances the study's relevance and applicability. In conclusion, the research introduces an uncertain SEIAR system dynamics model with unique contributions to policymaking, economic considerations, and sensitivity assessments for respiratory diseases. The outcomes and insights derived from the study not only advance our understanding of disease dynamics but also provide actionable information for effective public health management.
本研究调查了在社区卫生管理中采用先进系统模型的意义,重点关注作为呼吸道病毒的新冠病毒。通过开发一个整合不确定SEIAR模型的系统动力学模型,我们的研究使用集合卡尔曼滤波器(EnKF)和 metropolis - 黑斯廷斯(MH)算法解决了参数不确定性这一关键问题。我们以伊朗实际的新冠疫情爆发为例进行了案例研究,深入探讨了有效的疫情控制方案,并考虑了呼吸道病毒的全球影响。研究得出了独特的结果,展示了伊朗不同情景下的可变死亡率(40,500至436,500)。使用新病例、死亡和康复人数的归一化均方根偏差(NRMSD)(分别为0.2%、1.2%和0.6%)对模型准确性进行了严格评估。这些结果不仅丰富了现有知识体系,还为与呼吸道疾病相关的医疗政策、经济考量和敏感性评估提供了实际意义。本研究在系统动力学框架内建模和处理不确定性的方法上有别于其他研究。EnKF和MH算法的整合提供了对参数不确定性的细致理解,为分析增添了一层复杂性。该模型在伊朗实际新冠疫情爆发中的应用进一步增强了研究的相关性和适用性。总之,该研究引入了一个不确定的SEIAR系统动力学模型,对呼吸道疾病的政策制定、经济考量和敏感性评估具有独特贡献。研究得出的结果和见解不仅推进了我们对疾病动态的理解,还为有效的公共卫生管理提供了可操作的信息。