Jeong Soojin, Huang Chuanliang, Levell Zachary, Skalla Rebecca X, Hong Wei, Escorcia Nicole J, Losovyj Yaroslav, Zhu Baixu, Butrum-Griffith Alex N, Liu Yang, Li Christina W, Reifsnyder Hickey Danielle, Liu Yuanyue, Ye Xingchen
Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.
Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
J Am Chem Soc. 2024 Feb 21;146(7):4508-4520. doi: 10.1021/jacs.3c11013. Epub 2024 Feb 6.
Electroreduction of CO into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of -propanol from CO and HO. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO-to--propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C-C coupling while preserving the (100)-like 4-fold Cu ensembles which favor C-C coupling. With the AuCu champion catalyst, we achieve an -propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.
将CO电还原为液体燃料是存储间歇性可再生能源的一种极具吸引力的策略。在此,我们引入了一类晶面定义的稀铜合金纳米晶体作为催化剂,以改善由CO和H₂O电合成正丙醇的过程。我们表明,将少量弱CO结合金属引入Cu(100)表面,通过改变催化剂的电子结构促进C-C偶联,同时保留有利于C-C偶联的类(100)四重Cu原子簇,从而提高了CO到正丙醇的活性和选择性。使用AuCu最优催化剂,相对于可逆氢电极,在-0.41 V的低电位下,我们实现了18.2±0.3%的正丙醇法拉第效率和16.6 mA·cm⁻²的峰值产率。这项研究表明,形状可控的稀金属合金纳米晶体代表了电催化剂设计的一个新前沿,精确控制主体和少数金属的分布对于阐明结构-组成-性能关系以及获得优异的催化性能至关重要。