Suppr超能文献

一种智能搜索与检索系统(IRIS)以及基于机器学习和联合核监督哈希的用于决策支持的临床与研究知识库。

An Intelligent Search & Retrieval System (IRIS) and Clinical and Research Repository for Decision Support Based on Machine Learning and Joint Kernel-based Supervised Hashing.

作者信息

Foran David J, Chen Wenjin, Kurc Tahsin, Gupta Rajarshi, Kaczmarzyk Jakub Roman, Torre-Healy Luke Austin, Bremer Erich, Ajjarapu Samuel, Do Nhan, Harris Gerald, Stroup Antoinette, Durbin Eric, Saltz Joel H

机构信息

Center for Biomedical Informatics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.

Department of Biomedical Informatics, Stony Brook University, The State University of New York, Stony Brook, NY, USA.

出版信息

Cancer Inform. 2024 Feb 4;23:11769351231223806. doi: 10.1177/11769351231223806. eCollection 2024.

Abstract

Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site.

摘要

大规模、多中心合作对于肿瘤学领域广泛的研究和临床活动而言正变得不可或缺。为推动癌症生物学、精准肿瘤学及群体科学的下一代进展,有必要开发并实施数据管理和分析工具,使研究人员能够可靠且客观地检测、描述并记录从良性状态转变为癌症状态以及在疾病进展全过程中发生的表型和基因组变化。为助力这些工作,信息学领域有责任建立工作流程和架构,以自动化汇总和整理越来越多、类型各异的临床数据,这些数据类型和模式涵盖从新的分子和实验室检测到复杂的诊断成像研究等。为应对这些挑战,全国各地的领先医疗中心正在大力投资建立企业级数据仓库。然而,许多数据仓库的一个重大局限在于,它们仅设计用于支持字母数字信息。与那些传统设计不同,我们开发的系统支持自动收集和挖掘多模态数据,包括基因组学、数字病理学和放射学图像。在本文中,我们的团队描述了一个多模态临床与研究数据仓库(CRDW)的设计、开发和实施,该数据仓库与一套计算和机器学习工具紧密集成,以提供对肿瘤环境潜在特征的可操作洞察,而使用标准方法和工具则无法揭示这些特征。该系统具有灵活的提取、转换和加载(ETL)接口,使其能够根据特定部署地点使用的电子健康记录(EHR)和其他数据源,适应汇总来自不同临床和研究来源的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011d/10840403/f941f82e7e45/10.1177_11769351231223806-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验