Suppr超能文献

人工智能在胃肠病学实践中的应用要求。

Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology.

机构信息

Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan.

Digital Healthcare Business Development Office, NEC Corporation, Tokyo 108-8556, Japan.

出版信息

World J Gastroenterol. 2021 Jun 7;27(21):2818-2833. doi: 10.3748/wjg.v27.i21.2818.

Abstract

Tremendous advances in artificial intelligence (AI) in medical image analysis have been achieved in recent years. The integration of AI is expected to cause a revolution in various areas of medicine, including gastrointestinal (GI) pathology. Currently, deep learning algorithms have shown promising benefits in areas of diagnostic histopathology, such as tumor identification, classification, prognosis prediction, and biomarker/genetic alteration prediction. While AI cannot substitute pathologists, carefully constructed AI applications may increase workforce productivity and diagnostic accuracy in pathology practice. Regardless of these promising advances, unlike the areas of radiology or cardiology imaging, no histopathology-based AI application has been approved by a regulatory authority or for public reimbursement. Thus, implying that there are still some obstacles to be overcome before AI applications can be safely and effectively implemented in real-life pathology practice. The challenges have been identified at different stages of the development process, such as needs identification, data curation, model development, validation, regulation, modification of daily workflow, and cost-effectiveness balance. The aim of this review is to present challenges in the process of AI development, validation, and regulation that should be overcome for its implementation in real-life GI pathology practice.

摘要

近年来,人工智能(AI)在医学图像分析领域取得了巨大的进展。预计 AI 的融合将在包括胃肠病学(GI)病理学在内的医学的各个领域引发一场革命。目前,深度学习算法在诊断组织病理学领域,如肿瘤识别、分类、预后预测和生物标志物/遗传改变预测方面显示出了很好的效果。虽然 AI 不能替代病理学家,但精心构建的 AI 应用程序可能会提高病理实践中的工作效率和诊断准确性。尽管取得了这些有前景的进展,但与放射学或心脏病学成像领域不同,没有基于组织病理学的 AI 应用程序获得监管机构的批准或用于公共报销。因此,这意味着在 AI 应用程序能够安全有效地应用于实际的病理实践之前,仍有一些障碍需要克服。这些挑战在开发过程的不同阶段都已经被识别出来,例如需求识别、数据整理、模型开发、验证、监管、日常工作流程的修改以及成本效益的平衡。本文的目的是提出在 AI 开发、验证和监管过程中需要克服的挑战,以便将其应用于实际的 GI 病理学实践中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/495c/8173389/efccd2d09d7f/WJG-27-2818-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验