Suppr超能文献

利用自动化乳腺癌检测识别浸润性乳腺癌中肿瘤浸润淋巴细胞的空间分布。

Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor-Infiltrating Lymphocytes in Invasive Breast Cancer.

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, New York.

Department of Biomedical Informatics, Stony Brook Medicine, Stony Brook, New York; Department of Pathology, Stony Brook University Hospital, Stony Brook, New York.

出版信息

Am J Pathol. 2020 Jul;190(7):1491-1504. doi: 10.1016/j.ajpath.2020.03.012. Epub 2020 Apr 8.

Abstract

Quantitative assessment of spatial relations between tumor and tumor-infiltrating lymphocytes (TIL) is increasingly important in both basic science and clinical aspects of breast cancer research. We have developed and evaluated convolutional neural network analysis pipelines to generate combined maps of cancer regions and TILs in routine diagnostic breast cancer whole slide tissue images. The combined maps provide insight about the structural patterns and spatial distribution of lymphocytic infiltrates and facilitate improved quantification of TILs. Both tumor and TIL analyses were evaluated by using three convolutional neural network networks (34-layer ResNet, 16-layer VGG, and Inception v4); the results compared favorably with those obtained by using the best published methods. We have produced open-source tools and a public data set consisting of tumor/TIL maps for 1090 invasive breast cancer images from The Cancer Genome Atlas. The maps can be downloaded for further downstream analyses.

摘要

定量评估肿瘤与肿瘤浸润淋巴细胞(TIL)之间的空间关系在乳腺癌研究的基础科学和临床方面都变得越来越重要。我们开发并评估了卷积神经网络分析管道,以生成常规诊断性乳腺癌全切片组织图像中癌症区域和 TIL 的组合图谱。这些组合图谱提供了关于淋巴细胞浸润的结构模式和空间分布的深入了解,并有助于更准确地量化 TIL。使用三个卷积神经网络(34 层 ResNet、16 层 VGG 和 Inception v4)对肿瘤和 TIL 进行了分析,结果与使用最佳发表方法的结果相当。我们已经生成了开源工具和一个公共数据集,其中包含来自癌症基因组图谱的 1090 张浸润性乳腺癌图像的肿瘤/TIL 图谱。可以下载这些图谱以进行进一步的下游分析。

相似文献

引用本文的文献

7
Application progress of artificial intelligence in tumor diagnosis and treatment.人工智能在肿瘤诊疗中的应用进展
Front Artif Intell. 2025 Jan 7;7:1487207. doi: 10.3389/frai.2024.1487207. eCollection 2024.
8
Uncertainty Estimation for Tumor Prediction with Unlabeled Data.利用未标记数据进行肿瘤预测的不确定性估计
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6946-6954. doi: 10.1109/cvprw63382.2024.00688. Epub 2024 Sep 27.

本文引用的文献

1
BACH: Grand challenge on breast cancer histology images.BACH:乳腺癌组织学图像的重大挑战。
Med Image Anal. 2019 Aug;56:122-139. doi: 10.1016/j.media.2019.05.010. Epub 2019 May 31.
5
Cancer statistics, 2019.癌症统计数据,2019 年。
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验