Suppr超能文献

随机治疗成本约束下的个体化治疗规则

Individualized treatment rules under stochastic treatment cost constraints.

作者信息

Qiu Hongxiang, Carone Marco, Luedtke Alex

机构信息

Department of Statistics, the Wharton School, University of Pennsylvania.

Department of Biostatistics, University of Washington.

出版信息

J Causal Inference. 2022 Jan;10(1):480-493. doi: 10.1515/jci-2022-0005. Epub 2022 Dec 31.

Abstract

Estimation and evaluation of individualized treatment rules have been studied extensively, but real-world treatment resource constraints have received limited attention in existing methods. We investigate a setting in which treatment is intervened upon based on covariates to optimize the mean counterfactual outcome under treatment cost constraints when the treatment cost is random. In a particularly interesting special case, an instrumental variable corresponding to encouragement to treatment is intervened upon with constraints on the proportion receiving treatment. For such settings, we first develop a method to estimate optimal individualized treatment rules. We further construct an asymptotically efficient plug-in estimator of the corresponding average treatment effect relative to a given reference rule.

摘要

个性化治疗规则的估计和评估已得到广泛研究,但现实世界中的治疗资源限制在现有方法中受到的关注有限。我们研究了一种情况,即当治疗成本是随机的时,基于协变量对治疗进行干预,以在治疗成本约束下优化平均反事实结果。在一个特别有趣的特殊情况下,对应于鼓励治疗的工具变量会在接受治疗的比例受到限制的情况下进行干预。对于这种情况,我们首先开发一种方法来估计最优个性化治疗规则。我们进一步构建了一个相对于给定参考规则的相应平均治疗效果的渐近有效插件估计器。

相似文献

1
Individualized treatment rules under stochastic treatment cost constraints.随机治疗成本约束下的个体化治疗规则
J Causal Inference. 2022 Jan;10(1):480-493. doi: 10.1515/jci-2022-0005. Epub 2022 Dec 31.
2
Optimal individualized decision rules using instrumental variable methods.使用工具变量法的最优个体化决策规则。
J Am Stat Assoc. 2021;116(533):174-191. doi: 10.1080/01621459.2020.1745814. Epub 2020 May 12.
10
Marginal Structural Models with Counterfactual Effect Modifiers.具有反事实效应修饰因子的边际结构模型。
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.

本文引用的文献

1
Optimal individualized decision rules using instrumental variable methods.使用工具变量法的最优个体化决策规则。
J Am Stat Assoc. 2021;116(533):174-191. doi: 10.1080/01621459.2020.1745814. Epub 2020 May 12.
4
Estimating individualized treatment rules for ordinal treatments.估计有序治疗的个体化治疗规则。
Biometrics. 2018 Sep;74(3):924-933. doi: 10.1111/biom.12865. Epub 2018 Mar 13.
6
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
8
Super-Learning of an Optimal Dynamic Treatment Rule.最优动态治疗规则的超学习
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
10
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验