Yang Shen, Müller Tatjana, Wang Nijing, Bekö Gabriel, Zhang Meixia, Merizak Marouane, Wargocki Pawel, Williams Jonathan, Licina Dusan
Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany.
Environ Sci Technol. 2024 Mar 12;58(10):4704-4715. doi: 10.1021/acs.est.3c08466. Epub 2024 Feb 7.
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 10 of 1-3 nm, 0-7.2 × 10 of 3-10 nm, and 0-1.3 × 10 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.
臭氧与人体表面的反应是室内超细颗粒物的一个重要来源。然而,由臭氧与人体化学反应产生的1-20纳米颗粒,作为颗粒形成和生长的第一步,仍未得到充分研究。通风和室内空气流动可能对这些过程产生重要影响。因此,在一个可控气候舱中,我们测量了由臭氧与人体化学反应引发的超细颗粒物,以及它们对换气率(ACR,0.5、1.5和3小时)和混合风扇运行(开和关)的依赖性。同时,我们测量了挥发性有机化合物(VOCs),并探索了颗粒与气相产物之间的相关性。在臭氧水平为25-30 ppb时,根据换气率和混合风扇的运行情况,每人每小时会产生0.2-7.7×10个1-3纳米的颗粒、0-7.2×10个3-10纳米的颗粒以及0-1.3×10个10-20纳米的颗粒。与尺寸相关的颗粒生长和形成速率随着换气率的提高而增加。混合风扇的运行抑制了颗粒的形成和生长,这是由于新形成的颗粒及其前体的表面沉积增强。相关性分析揭示了由臭氧与人体化学反应引发的颗粒与VOCs之间的复杂相互作用。结果表明,相对于室内化学反应,通风和室内空气流动可能对颗粒动力学和归宿有更显著的影响。