Suppr超能文献

间期活性驱动的染色质组织:压缩、分离和纠缠抑制

Activity-driven chromatin organization during interphase: compaction, segregation, and entanglement suppression.

作者信息

Chan Brian, Rubinstein Michael

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, United States.

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, United States.

出版信息

bioRxiv. 2024 Jan 26:2024.01.22.576729. doi: 10.1101/2024.01.22.576729.

Abstract

In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross over between two and four at contour lengths on the order of 30 kilo-base pairs (kbp). The anomalously high fractal dimension is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times longer than tens of minutes to be proportional to . We validate our results with hybrid molecular dynamics - Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.

摘要

在哺乳动物细胞中,黏连蛋白复合体被认为在间期沿染色质易位,通过一个称为主动环挤压的过程形成动态环。染色体构象捕获和成像实验表明,染色质采用一种紧凑结构,染色体之间以及染色体片段之间的相互穿透有限。我们发展了一种理论,证明主动环挤压会使染色质的表观分形维数在轮廓长度约为30千碱基对(kbp)时在2到4之间转变。异常高的分形维数是由于挤压出的环在主动挤压过程中无法完全松弛。在更长轮廓长度尺度上的压缩在拓扑相关结构域(TADs)内延伸,促进远端元件对基因的调控。挤压诱导的压缩将TADs分隔开,使得TADs之间的重叠减少到小于35%,并使染色质的缠结链增加高达50倍,达到数百万碱基对。此外,主动环挤压将黏连蛋白的运动与先前挤压黏连蛋白形成的染色质构象相耦合,并导致染色质位点在数十分钟以上的滞后时间内的平均平方位移与……成正比。我们用混合分子动力学 - 蒙特卡罗模拟验证了我们的结果,并表明我们的理论与实验数据一致。这项工作为间期染色质的紧凑组织提供了理论基础,解释了TADs分隔和染色质缠结抑制的物理原因,这些有助于高效的基因调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2693/10849557/f9ade6d80407/nihpp-2024.01.22.576729v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验