Suppr超能文献

将金属有机框架纳米酶与碳纳米管耦合于梯度多孔中空纤维膜上用于非酶电化学检测过氧化氢

Coupling metal organic frameworks nanozyme with carbon nanotubes on the gradient porous hollow fiber membrane for nonenzymatic electrochemical HO detection.

作者信息

Ma Shuyan, Xiao Shenghao, Hong Yinhui, Bao Yuheng, Xu Zhikang, Chen Dajing, Huang Xiaojun

机构信息

Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Engineering Research Center for Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.

出版信息

Anal Chim Acta. 2024 Mar 8;1293:342285. doi: 10.1016/j.aca.2024.342285. Epub 2024 Jan 23.

Abstract

In this paper, we present a gradient porous hollow fiber structure integrated the signal transduction within a microspace, serving as a platform for cellular metabolism monitoring. We developed a nonenzymatic electrochemical electrode by coupling carbon nanotubes (CNT) and metal organic frameworks (MOF) nanozyme on three-dimensional (3D) gradient porous hollow fiber membrane (GPF) for in-situ detection of cell released hydrogen peroxide (HO). The GPF was used as a substrate for cell culture as well as the supporting matrix of the working electrode. The ultrasonically coupled CNT@MOF composite was immobilized on the outer surface of the GPF by means of pressure filtration. Notably, the MOF, acting as a peroxidase mimic, exhibits superior stability compared to traditional horseradish peroxidase. The incorporation of CNT not only provided sufficient specific surface area to improve the uniform distribution of MOF nanozyme, but also formed 3D conductive network. This network efficiently facilitates the electrons transfer during the catalytic process of the MOF, addressing the inherent poor conductivity of MOFs. The GPF-CNT@MOF nonenzymatic bioelectrode demonstrated excellent electrocatalytic performance including rapid response, satisfactory sensing selectivity, and attractive stability, which enabled the development of a robust in-situ cellular metabolic monitoring platform.

摘要

在本文中,我们展示了一种在微空间内集成信号转导的梯度多孔中空纤维结构,作为细胞代谢监测的平台。我们通过将碳纳米管(CNT)和金属有机框架(MOF)纳米酶耦合在三维(3D)梯度多孔中空纤维膜(GPF)上,开发了一种非酶电化学电极,用于原位检测细胞释放的过氧化氢(HO)。GPF用作细胞培养的底物以及工作电极的支撑基质。通过压力过滤将超声耦合的CNT@MOF复合材料固定在GPF的外表面。值得注意的是,作为过氧化物酶模拟物的MOF与传统辣根过氧化物酶相比表现出优异的稳定性。CNT的加入不仅提供了足够的比表面积以改善MOF纳米酶的均匀分布,还形成了3D导电网络。该网络有效地促进了MOF催化过程中的电子转移,解决了MOF固有的导电性差的问题。GPF-CNT@MOF非酶生物电极表现出优异的电催化性能,包括快速响应、令人满意的传感选择性和良好的稳定性,这使得能够开发出一个强大的原位细胞代谢监测平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验