Suppr超能文献

用于增强光催化降解抗生素污染物的BiWO缺陷工程

Defect Engineering of BiWO for Enhanced Photocatalytic Degradation of Antibiotic Pollutants.

作者信息

Tai Ran, Gao Shuai, Tang Yao, Ma Xinbo, Ding Peiren, Wu Runjie, Li Peishen, Song Xingjian, Chen Shaowei, Wang Qiang

机构信息

Laboratory for Micro-sized Functional Materials & College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing, 100048, China.

College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing, 100871, China.

出版信息

Small. 2024 Jul;20(29):e2310785. doi: 10.1002/smll.202310785. Epub 2024 Feb 9.

Abstract

Infiltration of excessive antibiotics into aquatic ecosystems plays a significant role in antibiotic resistance, a major global health challenge. It is therefore critical to develop effective technologies for their removal. Herein, defect-rich BiWO nanoparticles are solvothermally prepared via epitaxial growth on pristine BiWO seed nanocrystals, and the efficiency of the photocatalytic degradation of ciprofloxacin, a common antibiotic, is found to increase markedly from 62.51% to 98.27% under visible photoirradiation for 60 min. This is due to the formation of a large number of structural defects, where the synergistic interactions between grain boundaries and adjacent dislocations and oxygen vacancies lead to an improved separation and migration efficiency of photogenerated carriers and facilitate the adsorption and degradation of ciprofloxacin, as confirmed in experimental and theoretical studies. Results from this work demonstrate the unique potential of defect engineering for enhanced photocatalytic performance, a critical step in removing antibiotic contaminants in aquatic ecosystems.

摘要

过量抗生素渗入水生生态系统在抗生素耐药性方面起着重要作用,这是一项重大的全球健康挑战。因此,开发有效的去除技术至关重要。在此,通过在原始BiWO籽晶纳米晶体上外延生长,溶剂热法制备了富含缺陷的BiWO纳米颗粒,发现在可见光照射60分钟的情况下,常见抗生素环丙沙星的光催化降解效率从62.51%显著提高到98.27%。这是由于形成了大量结构缺陷,晶界与相邻位错和氧空位之间的协同相互作用导致光生载流子的分离和迁移效率提高,并促进了环丙沙星的吸附和降解,实验和理论研究均证实了这一点。这项工作的结果证明了缺陷工程在增强光催化性能方面的独特潜力,这是去除水生生态系统中抗生素污染物的关键一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验