文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚多巴胺纳米系统在药物递送中的应用:尺寸、形态和表面电荷的影响

Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge.

作者信息

Menichetti Arianna, Mordini Dario, Montalti Marco

机构信息

Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.

出版信息

Nanomaterials (Basel). 2024 Feb 1;14(3):303. doi: 10.3390/nano14030303.


DOI:10.3390/nano14030303
PMID:38334574
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10856634/
Abstract

Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.

摘要

近年来,基于纳米材料的药物递送策略因其卓越性能在各类治疗中引起了广泛关注。聚多巴胺(PDA)作为纳米医学中最具吸引力的材料之一,因其多功能性和生物相容性,已在药物递送领域得到广泛研究。它可以很容易地进行功能化修饰,以促进细胞摄取和血液循环等过程,还能通过近红外光照射和pH值这两种刺激诱导药物释放。在本综述中,我们基于PDA纳米材料的尺寸、形态和表面电荷,描述其在药物递送方面的性能。实际上,这些特性强烈影响药物递送系统所涉及的主要机制:血液循环、细胞摄取、药物负载和药物释放。了解PDA纳米系统的性质与这些现象之间的联系,对于基于特定药物递送应用获得新型纳米载体的可控设计至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/25b395c8ef5b/nanomaterials-14-00303-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/c7e3f97f76d3/nanomaterials-14-00303-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/1d1f1fd0db7d/nanomaterials-14-00303-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/71f8da7d63e2/nanomaterials-14-00303-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/e2db68157cda/nanomaterials-14-00303-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/cd93188da5ca/nanomaterials-14-00303-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/42e2c3daaefc/nanomaterials-14-00303-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/25b395c8ef5b/nanomaterials-14-00303-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/c7e3f97f76d3/nanomaterials-14-00303-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/1d1f1fd0db7d/nanomaterials-14-00303-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/71f8da7d63e2/nanomaterials-14-00303-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/e2db68157cda/nanomaterials-14-00303-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/cd93188da5ca/nanomaterials-14-00303-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/42e2c3daaefc/nanomaterials-14-00303-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/10856634/25b395c8ef5b/nanomaterials-14-00303-g007.jpg

相似文献

[1]
Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge.

Nanomaterials (Basel). 2024-2-1

[2]
Polydopamine-Modified Liposomes: Preparation and Recent Applications in the Biomedical Field.

ACS Omega. 2024-5-28

[3]
Application of polydopamine in tumor targeted drug delivery system and its drug release behavior.

J Control Release. 2018-10-9

[4]
Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy.

J Control Release. 2019-7-27

[5]
Polydopamine-Based Nanocarriers for Photosensitizer Delivery.

Front Chem. 2019-7-12

[6]
Comparison of Polydopamine-Coated Mesoporous Silica Nanorods and Spheres for the Delivery of Hydrophilic and Hydrophobic Anticancer Drugs.

Int J Mol Sci. 2019-7-11

[7]
Current strategies to enhance the targeting of polydopamine-based platforms for cancer therapeutics.

J Drug Target. 2020-2

[8]
Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy.

Drug Deliv. 2017-11

[9]
Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance.

Colloids Surf B Biointerfaces. 2019-11-1

[10]
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers.

Acta Biomater. 2018-5-21

引用本文的文献

[1]
Bioinspired Nanoplatforms: Polydopamine and Exosomes for Targeted Antimicrobial Therapy.

Polymers (Basel). 2025-6-16

[2]
Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy.

Front Bioeng Biotechnol. 2025-4-1

[3]
Macrophage membrane-coated polydopamine nanomedicine for treating acute lung injury through modulation of neutrophil extracellular traps and M2 macrophage polarization.

Mater Today Bio. 2025-3-24

[4]
Penetration of Microplastics and Nanoparticles Through Skin: Effects of Size, Shape, and Surface Chemistry.

J Xenobiot. 2024-12-31

[5]
Nanosomes in Precision Nanomedicine.

Nanomaterials (Basel). 2024-10-27

[6]
Polydopamine Applications in Biomedicine and Environmental Science.

Materials (Basel). 2024-8-7

[7]
Melanin as a Photothermal Agent in Antimicrobial Systems.

Int J Mol Sci. 2024-8-18

本文引用的文献

[1]
Gold nanoparticles and gold nanorods in the landscape of cancer therapy.

Mol Cancer. 2023-6-21

[2]
Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment.

Nanomaterials (Basel). 2023-5-17

[3]
Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles.

J Funct Biomater. 2023-4-26

[4]
Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents.

Antioxidants (Basel). 2023-4-2

[5]
A multifunctional nanocomposite coated with a BSA membrane for cascaded nitric oxide therapy.

Int J Biol Macromol. 2023-5-31

[6]
Nonporous versus Mesoporous Bioinspired Polydopamine Nanoparticles for Skin Drug Delivery.

Biomacromolecules. 2023-4-10

[7]
Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity.

Nanomaterials (Basel). 2023-2-7

[8]
A Bioinspired Skin UV Filter with Broadband UV Protection, Photostability, and Resistance to Oxidative Damage.

ACS Appl Mater Interfaces. 2023-3-1

[9]
Reversible Supramolecular Noncovalent Self-Assembly Determines the Optical Properties and the Formation of Melanin-like Nanoparticles.

J Phys Chem Lett. 2022-10-27

[10]
PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment.

Int J Nanomedicine. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索