Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK.
Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
Cells. 2024 Jan 25;13(3):223. doi: 10.3390/cells13030223.
Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within , , , , and have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
路易体痴呆症(DLB)是一个重大的公共健康问题。它是第二常见的神经退行性痴呆症,表现出严重的神经精神症状。基因组和转录组分析为疾病病理学提供了一些见解。在重复的基因组研究中,已经表明 、 、 、 和 中的变体与 DLB 相关。转录组分析主要针对候选基因,已经确定了路易体聚集、蛋白质降解、淀粉样蛋白沉积、神经炎症、线粒体功能障碍和热休克蛋白上调的特征。然而,对 DLB 分子病理学的理解并不完整。这导致了目前的临床状况,即没有可用的疾病修饰治疗或基于血液的诊断生物标志物。数据科学方法有可能改善疾病的认识,优化治疗干预和药物开发,以减轻疾病负担。基因组预测将有助于早期识别病例,并及时应用未来的疾病修饰治疗。对整个转录组的转录水平分析和对多组学数据的机器学习分析将揭示新的特征,这些特征可能为 DLB 病理学提供线索,并促进药物开发。这篇综述将讨论目前对 DLB 的基因组和转录组理解,强调文献中的差距,并描述可能推动该领域发展的数据科学方法。