Suppr超能文献

使用现代数据科学工具重新审视基于ℓ-小波重建的压缩感知 MRI。

Compressed Sensing MRI with ℓ-Wavelet Reconstruction Revisited Using Modern Data Science Tools.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3596-3600. doi: 10.1109/EMBC46164.2021.9630985.

Abstract

Deep learning (DL) has emerged as a powerful tool for improving the reconstruction quality of accelerated MRI. These methods usually show enhanced performance compared to conventional methods, such as compressed sensing (CS) and parallel imaging. However, in most scenarios, CS is implemented with two or three empirically-tuned hyperparameters, while a plethora of advanced data science tools are used in DL. In this work, we revisit ℓ -wavelet CS for accelerated MRI using modern data science tools. By using tools like algorithm unrolling and end-to-end training with stochastic gradient descent over large databases that DL algorithms utilize, and combining these with conventional concepts like wavelet sub-band processing and reweighted ℓ minimization, we show that ℓ-wavelet CS can be fine-tuned to a level comparable to DL methods. While DL uses hundreds of thousands of parameters, the proposed optimized ℓ-wavelet CS with sub-band training and reweighting uses only 128 parameters, and employs a fully-explainable convex reconstruction model.

摘要

深度学习(DL)已成为提高加速 MRI 重建质量的强大工具。与传统方法(如压缩感知(CS)和并行成像)相比,这些方法通常表现出更好的性能。然而,在大多数情况下,CS 是使用两个或三个经验调整的超参数实现的,而 DL 中使用了大量先进的数据科学工具。在这项工作中,我们使用现代数据科学工具重新审视了用于加速 MRI 的 ℓ -小波 CS。通过使用算法展开和端到端训练等工具,并结合传统概念,如小波子带处理和重新加权 ℓ 最小化,我们展示了可以将 ℓ -小波 CS 调整到与 DL 方法相当的水平。虽然 DL 使用数十万参数,但所提出的带子带训练和重新加权的优化 ℓ -小波 CS 仅使用 128 个参数,并采用完全可解释的凸重建模型。

相似文献

6
Exploiting the wavelet structure in compressed sensing MRI.利用压缩感知磁共振成像中的小波结构。
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.

本文引用的文献

6
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
7
Projection onto Epigraph Sets for Rapid Self-Tuning Compressed Sensing MRI.基于图注集的投影快速自调整压缩感知磁共振成像。
IEEE Trans Med Imaging. 2019 Jul;38(7):1677-1689. doi: 10.1109/TMI.2018.2885599. Epub 2018 Dec 7.
8
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验