Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3596-3600. doi: 10.1109/EMBC46164.2021.9630985.
Deep learning (DL) has emerged as a powerful tool for improving the reconstruction quality of accelerated MRI. These methods usually show enhanced performance compared to conventional methods, such as compressed sensing (CS) and parallel imaging. However, in most scenarios, CS is implemented with two or three empirically-tuned hyperparameters, while a plethora of advanced data science tools are used in DL. In this work, we revisit ℓ -wavelet CS for accelerated MRI using modern data science tools. By using tools like algorithm unrolling and end-to-end training with stochastic gradient descent over large databases that DL algorithms utilize, and combining these with conventional concepts like wavelet sub-band processing and reweighted ℓ minimization, we show that ℓ-wavelet CS can be fine-tuned to a level comparable to DL methods. While DL uses hundreds of thousands of parameters, the proposed optimized ℓ-wavelet CS with sub-band training and reweighting uses only 128 parameters, and employs a fully-explainable convex reconstruction model.
深度学习(DL)已成为提高加速 MRI 重建质量的强大工具。与传统方法(如压缩感知(CS)和并行成像)相比,这些方法通常表现出更好的性能。然而,在大多数情况下,CS 是使用两个或三个经验调整的超参数实现的,而 DL 中使用了大量先进的数据科学工具。在这项工作中,我们使用现代数据科学工具重新审视了用于加速 MRI 的 ℓ -小波 CS。通过使用算法展开和端到端训练等工具,并结合传统概念,如小波子带处理和重新加权 ℓ 最小化,我们展示了可以将 ℓ -小波 CS 调整到与 DL 方法相当的水平。虽然 DL 使用数十万参数,但所提出的带子带训练和重新加权的优化 ℓ -小波 CS 仅使用 128 个参数,并采用完全可解释的凸重建模型。