Alexander Kyle C, Ikonomidis John S, Akerman Adam W
Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
J Clin Med. 2024 Jan 31;13(3):818. doi: 10.3390/jcm13030818.
This review article presents an appraisal of pioneering technologies poised to revolutionize the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted in an exhaustive survey of contemporary and historical research, delving into the realms of machine learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies, including Siemens' published field report and many peer-reviewed publications. At the core of our survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing insights gleaned from our prior research endeavors alongside contemporary studies gathered from the PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative prospect of translating fundamental research into practical diagnostic tools. This narrative not only illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and therapeutic management of aortic aneurysm disease.
这篇综述文章对有望彻底改变主动脉瘤疾病诊断和管理的前沿技术进行了评估,主要关注胸主动脉,同时也涵盖了对腹部表现的见解。我们的全面分析基于对当代和历史研究的详尽调查,深入探讨机器学习(ML)和计算机辅助诊断领域。本综述大量借鉴了相关研究,包括西门子发表的实地报告以及许多同行评审的出版物。我们调查的核心是对ML驱动的诊断进展进行深入研究,剖析一系列算法套件,以揭示支撑计算机辅助诊断和医学图像处理的基础概念。我们的综述还延伸至对循环生物标志物的讨论,综合我们先前研究工作中获得的见解以及从PubMed Central数据库收集的当代研究成果。我们阐明了普遍存在的挑战,并设想了人工智能引导的主动脉测量和复杂的ML框架与相关生物标志物的计算分析的潜在融合。通过梳理当前的科学见解,我们思考将基础研究转化为实用诊断工具的变革性前景。这篇文章不仅阐明了当前的进展,还预测了主动脉瘤疾病临床评估和治疗管理方面的 promising trajectories。 (注:原文中“promising trajectories”直接保留英文,可能是特定术语或笔误,若有更准确含义可进一步完善翻译)