Suppr超能文献

基于机器视觉、高光谱及多源信息融合技术的畜禽肉品质检测研究进展

Research Progress on Quality Detection of Livestock and Poultry Meat Based on Machine Vision, Hyperspectral and Multi-Source Information Fusion Technologies.

作者信息

Xu Zeyu, Han Yu, Zhao Dianbo, Li Ke, Li Junguang, Dong Junyi, Shi Wenbo, Zhao Huijuan, Bai Yanhong

机构信息

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.

Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China.

出版信息

Foods. 2024 Feb 2;13(3):469. doi: 10.3390/foods13030469.

Abstract

Presently, the traditional methods employed for detecting livestock and poultry meat predominantly involve sensory evaluation conducted by humans, chemical index detection, and microbial detection. While these methods demonstrate commendable accuracy in detection, their application becomes more challenging when applied to large-scale production by enterprises. Compared with traditional detection methods, machine vision and hyperspectral technology can realize real-time online detection of large throughput because of their advantages of high efficiency, accuracy, and non-contact measurement, so they have been widely concerned by researchers. Based on this, in order to further enhance the accuracy of online quality detection for livestock and poultry meat, this article presents a comprehensive overview of methods based on machine vision, hyperspectral, and multi-sensor information fusion technologies. This review encompasses an examination of the current research status and the latest advancements in these methodologies while also deliberating on potential future development trends. The ultimate objective is to provide pertinent information and serve as a valuable research resource for the non-destructive online quality detection of livestock and poultry meat.

摘要

目前,用于检测畜禽肉的传统方法主要包括人工感官评价、化学指标检测和微生物检测。虽然这些方法在检测中具有较高的准确性,但在企业大规模生产中的应用面临较大挑战。与传统检测方法相比,机器视觉和高光谱技术具有高效、准确、非接触测量等优点,能够实现对大批量产品的实时在线检测,因此受到了研究人员的广泛关注。基于此,为了进一步提高畜禽肉在线质量检测的准确性,本文对基于机器视觉、高光谱和多传感器信息融合技术的方法进行了全面综述。本综述考察了这些方法的当前研究现状和最新进展,同时也探讨了潜在的未来发展趋势。最终目的是为畜禽肉无损在线质量检测提供相关信息,并成为有价值的研究资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd24/10855881/e51ba192af38/foods-13-00469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验