Suppr超能文献

III-A 型 CRISPR 免疫促进葡萄球菌的突变。

Type III-A CRISPR immunity promotes mutagenesis of staphylococci.

机构信息

Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.

Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.

出版信息

Nature. 2021 Apr;592(7855):611-615. doi: 10.1038/s41586-021-03440-3. Epub 2021 Apr 7.

Abstract

Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids and bacteriophages, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.

摘要

水平基因转移和突变是微生物进化的两个主要驱动力,使细菌能够适应不断变化的环境胁迫。成簇规律间隔短回文重复序列 (CRISPR) 系统利用 RNA 指导的核酸酶,靶向介导水平基因转移的移动遗传元件(如接合质粒和噬菌体)的基因组进行序列特异性破坏,从而限制了细菌通过这种机制进化的程度。CRISPR 系统的一部分也表现出非特异性的 DNA 降解;然而,这种特征是否以及如何影响宿主尚未得到研究。在这里,我们表明葡萄球菌 III-A 型 CRISPR-Cas 系统的非特异性核酸酶活性增加了宿主的突变,并加速了金黄色葡萄球菌和表皮葡萄球菌对抗生素耐药性的产生。这些突变需要诱导 SOS 反应以应对 DNA 损伤,并表现出独特的模式。我们的结果表明,III-A 型 CRISPR 系统通过差异影响产生遗传多样性的两种机制,能够调节细菌宿主的进化。

相似文献

1
Type III-A CRISPR immunity promotes mutagenesis of staphylococci.III-A 型 CRISPR 免疫促进葡萄球菌的突变。
Nature. 2021 Apr;592(7855):611-615. doi: 10.1038/s41586-021-03440-3. Epub 2021 Apr 7.
7
CRISPR-Cas10 assisted editing of virulent staphylococcal phages.CRISPR-Cas10介导的烈性葡萄球菌噬菌体编辑
Methods Enzymol. 2019;616:385-409. doi: 10.1016/bs.mie.2018.10.023. Epub 2018 Dec 17.

引用本文的文献

4
SOS response: Activation, impact, and drug targets.SOS 反应:激活、影响及药物靶点。
mLife. 2024 Sep 30;3(3):343-366. doi: 10.1002/mlf2.12137. eCollection 2024 Sep.
6
The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation.LexA-RecA* 结构揭示了 SOS 激活的隐蔽锁钥机制。
Nat Struct Mol Biol. 2024 Oct;31(10):1522-1531. doi: 10.1038/s41594-024-01317-3. Epub 2024 May 16.
7
Defense and anti-defense mechanisms of bacteria and bacteriophages.细菌和噬菌体的防御和反防御机制。
J Zhejiang Univ Sci B. 2024 Feb 14;25(3):181-196. doi: 10.1631/jzus.B2300101.

本文引用的文献

6
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.通过微型 CRISPR-Cas14 酶实现程序化 DNA 破坏。
Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验