TiCNet:用于 CT 图像中肺结节检测的卷积神经网络中的 Transformer。
TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images.
机构信息
College of Software, Nankai University, Tianjin, China.
Department of Radiology, Sun Yat-Sen University Cancer Center, Guangdong, China.
出版信息
J Imaging Inform Med. 2024 Feb;37(1):196-208. doi: 10.1007/s10278-023-00904-y. Epub 2024 Jan 10.
Lung cancer is the leading cause of cancer death. Since lung cancer appears as nodules in the early stage, detecting the pulmonary nodules in an early phase could enhance the treatment efficiency and improve the survival rate of patients. The development of computer-aided analysis technology has made it possible to automatically detect lung nodules in Computed Tomography (CT) screening. In this paper, we propose a novel detection network, TiCNet. It is attempted to embed a transformer module in the 3D Convolutional Neural Network (CNN) for pulmonary nodule detection on CT images. First, we integrate the transformer and CNN in an end-to-end structure to capture both the short- and long-range dependency to provide rich information on the characteristics of nodules. Second, we design the attention block and multi-scale skip pathways for improving the detection of small nodules. Last, we develop a two-head detector to guarantee high sensitivity and specificity. Experimental results on the LUNA16 dataset and PN9 dataset showed that our proposed TiCNet achieved superior performance compared with existing lung nodule detection methods. Moreover, the effectiveness of each module has been proven. The proposed TiCNet model is an effective tool for pulmonary nodule detection. Validation revealed that this model exhibited excellent performance, suggesting its potential usefulness to support lung cancer screening.
肺癌是癌症死亡的主要原因。由于肺癌在早期表现为结节,因此早期检测肺部结节可以提高治疗效率并提高患者的生存率。计算机辅助分析技术的发展使得在计算机断层扫描(CT)筛查中自动检测肺结节成为可能。在本文中,我们提出了一种新颖的检测网络,TiCNet。尝试在 3D 卷积神经网络(CNN)中嵌入一个 Transformer 模块,用于在 CT 图像上进行肺结节检测。首先,我们将 Transformer 和 CNN 集成到端到端结构中,以捕获短程和长程依赖关系,从而为结节特征提供丰富的信息。其次,我们设计了注意力块和多尺度 skip 路径,以提高小结节的检测能力。最后,我们开发了双头部检测器以保证高灵敏度和特异性。在 LUNA16 数据集和 PN9 数据集上的实验结果表明,与现有的肺结节检测方法相比,我们提出的 TiCNet 取得了优异的性能。此外,还证明了每个模块的有效性。所提出的 TiCNet 模型是一种有效的肺结节检测工具。验证结果表明,该模型具有出色的性能,有望用于支持肺癌筛查。