Suppr超能文献

基于 MRI 的 3D 高效胶囊网络前列腺癌分类。

MRI-based prostate cancer classification using 3D efficient capsule network.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.

The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Med Phys. 2024 Jul;51(7):4748-4758. doi: 10.1002/mp.16975. Epub 2024 Feb 12.

Abstract

BACKGROUND

Prostate cancer (PCa) is the most common cancer in men and the second leading cause of male cancer-related death. Gleason score (GS) is the primary driver of PCa risk-stratification and medical decision-making, but can only be assessed at present via biopsy under anesthesia. Magnetic resonance imaging (MRI) is a promising non-invasive method to further characterize PCa, providing additional anatomical and functional information. Meanwhile, the diagnostic power of MRI is limited by qualitative or, at best, semi-quantitative interpretation criteria, leading to inter-reader variability.

PURPOSES

Computer-aided diagnosis employing quantitative MRI analysis has yielded promising results in non-invasive prediction of GS. However, convolutional neural networks (CNNs) do not implicitly impose a frame of reference to the objects. Thus, CNNs do not encode the positional information properly, limiting method robustness against simple image variations such as flipping, scaling, or rotation. Capsule network (CapsNet) has been proposed to address this limitation and achieves promising results in this domain. In this study, we develop a 3D Efficient CapsNet to stratify GS-derived PCa risk using T2-weighted (T2W) MRI images.

METHODS

In our method, we used 3D CNN modules to extract spatial features and primary capsule layers to encode vector features. We then propose to integrate fully-connected capsule layers (FC Caps) to create a deeper hierarchy for PCa grading prediction. FC Caps comprises a secondary capsule layer which routes active primary capsules and a final capsule layer which outputs PCa risk. To account for data imbalance, we propose a novel dynamic weighted margin loss. We evaluate our method on a public PCa T2W MRI dataset from the Cancer Imaging Archive containing data from 976 patients.

RESULTS

Two groups of experiments were performed: (1) we first identified high-risk disease by classifying low + medium risk versus high risk; (2) we then stratified disease in one-versus-one fashion: low versus high risk, medium versus high risk, and low versus medium risk. Five-fold cross validation was performed. Our model achieved an area under receiver operating characteristic curve (AUC) of 0.83 and 0.64 F1-score for low versus high grade, 0.79 AUC and 0.75 F1-score for low + medium versus high grade, 0.75 AUC and 0.69 F1-score for medium versus high grade and 0.59 AUC and 0.57 F1-score for low versus medium grade. Our method outperformed state-of-the-art radiomics-based classification and deep learning methods with the highest metrics for each experiment. Our divide-and-conquer strategy achieved weighted Cohen's Kappa score of 0.41, suggesting moderate agreement with ground truth PCa risks.

CONCLUSIONS

In this study, we proposed a novel 3D Efficient CapsNet for PCa risk stratification and demonstrated its feasibility. This developed tool provided a non-invasive approach to assess PCa risk from T2W MR images, which might have potential to personalize the treatment of PCa and reduce the number of unnecessary biopsies.

摘要

背景

前列腺癌(PCa)是男性最常见的癌症,也是男性癌症相关死亡的第二大主要原因。格里森评分(GS)是 PCa 风险分层和医学决策的主要驱动因素,但目前只能在麻醉下通过活检进行评估。磁共振成像(MRI)是一种有前途的非侵入性方法,可以进一步对 PCa 进行特征描述,提供额外的解剖学和功能信息。同时,MRI 的诊断能力受到定性或最多半定量解释标准的限制,导致读者间的变异性。

目的

采用定量 MRI 分析的计算机辅助诊断在无创预测 GS 方面取得了有希望的结果。然而,卷积神经网络(CNN)并没有为对象隐含地施加参考系。因此,CNN 不能正确地编码位置信息,限制了方法对简单图像变化的稳健性,例如翻转、缩放或旋转。胶囊网络(CapsNet)已被提出以解决这一限制,并在该领域取得了有希望的结果。在这项研究中,我们开发了一种 3D 高效胶囊网络,使用 T2 加权(T2W)MRI 图像对 GS 衍生的 PCa 风险进行分层。

方法

在我们的方法中,我们使用 3D CNN 模块提取空间特征,并使用主胶囊层对向量特征进行编码。然后,我们提出集成全连接胶囊层(FC Caps),为 PCa 分级预测创建更深层次的层次结构。FC Caps 包括一个将活动主胶囊路由的二级胶囊层和一个输出 PCa 风险的最终胶囊层。为了考虑数据不平衡,我们提出了一种新的动态加权边界损失。我们在来自癌症成像档案的公共 PCa T2W MRI 数据集上评估了我们的方法,该数据集包含了 976 名患者的数据。

结果

进行了两组实验:(1)我们首先通过将低+中风险与高风险进行分类来识别高风险疾病;(2)然后我们以一对一的方式对疾病进行分层:低与高风险、中与高风险以及低与中风险。进行了五重交叉验证。我们的模型在低与高分级的受试者工作特征曲线(AUC)中获得了 0.83 和 0.64 的 F1 分数,在低+中与高分级的 AUC 中获得了 0.79 和 0.75 的 F1 分数,在中与高分级的 AUC 中获得了 0.75 和 0.69 的 F1 分数,在低与中分级的 AUC 中获得了 0.59 和 0.57 的 F1 分数。我们的方法在每个实验中都优于基于放射组学的分类和深度学习方法,取得了最高的指标。我们的分而治之策略实现了加权 Cohen's Kappa 评分 0.41,这表明与 PCa 风险的实际情况存在中度一致性。

结论

在这项研究中,我们提出了一种新的用于 PCa 风险分层的 3D 高效胶囊网络,并证明了其可行性。该开发工具提供了一种从 T2W MR 图像评估 PCa 风险的非侵入性方法,这可能有潜力使 PCa 的治疗个性化,并减少不必要的活检数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验